File size: 5,490 Bytes
c1c8fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import gradio as gr
import pandas as pd
import joblib
# Load your churn prediction model
model = joblib.load('Model\\best_model.pkl')
# Create a Gradio interface
def predict_churn(SeniorCitizen, Partner, Dependents, tenure, InternetService,
OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport,
StreamingTV, StreamingMovies, Contract, PaperlessBilling,
PaymentMethod, MonthlyCharges, TotalCharges):
# Create a dictionary with input features
input_data = {
'SeniorCitizen': SeniorCitizen,
'Partner': Partner,
'Dependents': Dependents,
'tenure': tenure,
'InternetService': InternetService,
'OnlineSecurity': OnlineSecurity,
'OnlineBackup': OnlineBackup,
'DeviceProtection': DeviceProtection,
'TechSupport': TechSupport,
'StreamingTV': StreamingTV,
'StreamingMovies': StreamingMovies,
'Contract': Contract,
'PaperlessBilling': PaperlessBilling,
'PaymentMethod': PaymentMethod,
'MonthlyCharges': MonthlyCharges,
'TotalCharges': TotalCharges
}
# Create a DataFrame from the input data
input_df = pd.DataFrame([input_data])
# Make predictions
prediction = model.predict(input_df)
# Determine the churn prediction
if prediction[0] == 0:
churn_result = '<span style="color: limegreen;font-size:20px;">Customer will not churn</span>'
else:
churn_result = '<span style="color: red;font-size:20px;">Customer will churn</span>'
return churn_result
# Define Gradio components
with gr.Blocks(theme=gr.themes.Base(primary_hue="stone",neutral_hue="stone")) as block:
gr.Markdown(
"""# 👋 Welcome to Team Cape Cod's Churn Prediction App
This App predicts whether a customer will churn or not""")
with gr.Row():
with gr.Column():
SeniorCitizen = gr.Radio(["Yes", "No"], label="Are you a Senior Citizen?")
Partner = gr.Radio(["Yes", "No"], label="Do you have a partner?")
Dependents = gr.Radio(["Yes", "No"], label="Do you have dependents?")
tenure = gr.Number(label="Tenure (months): How long have you been at the company")
InternetService = gr.Radio(["DSL", "Fiber optic", "No"], label="What Internet Service Do You Use?")
OnlineSecurity = gr.Radio(["Yes", "No", "No internet service"], label="Do You Have Online Security?")
with gr.Column():
OnlineBackup = gr.Radio(["Yes", "No", "No internet service"], label="Do You Have Any Online Backup Service?")
DeviceProtection = gr.Radio(["Yes", "No", "No internet service"], label="Do You Use Any Device Protection?")
TechSupport = gr.Radio(["Yes", "No", "No internet service"], label="Do You Use TechSupport?")
StreamingTV = gr.Radio(["Yes", "No", "No internet service"], label="Do You Stream TV?")
StreamingMovies = gr.Radio(["Yes", "No", "No internet service"], label="Do You Stream Movies?")
with gr.Column():
Contract = gr.Radio(["Month-to-month", "One year", "Two year"], label="What Is Your Contract Type?")
PaperlessBilling = gr.Radio(["Yes", "No"], label="Do You Use Paperless Billing?")
PaymentMethod = gr.Dropdown(["Electronic check", "Mailed check", "Bank transfer (automatic)", "Credit card (automatic)"], label="What Payment Method Do You Use?")
MonthlyCharges = gr.Number(label="What is your Monthly Charge?")
TotalCharges = gr.Number(label="What are your Total Charges?")
#create a variable that clear button will clear
input_components = [SeniorCitizen, Partner, Dependents, tenure,
InternetService, OnlineSecurity, OnlineBackup, DeviceProtection,
TechSupport, StreamingTV, StreamingMovies, Contract, PaperlessBilling,
PaymentMethod, MonthlyCharges, TotalCharges]
#Create a button user will click to clear inputs selected
gr.ClearButton(input_components)
#create markdown for ouput
text = gr.Markdown("## Churn Status")
# Define Gradio outputs
output = gr.HTML("Awaiting Prediction")
# Create a button
button = gr.Button("Predict")
# Create Gradio interface
button.click(fn=predict_churn,inputs=input_components, outputs=output)
#create an example dataframe
gr.Markdown("## Input Examples")
gr.Examples([['No', 'No', 'No', '12', 'Fiber optic', 'No', 'No', 'No', 'No', 'Yes', 'No', 'Month-to-month', 'Yes', 'Electronic check', '84.45', '1059.55'],
['No', 'No', 'No', '9', 'No', 'No internet service', 'No internet service', 'No internet service', 'No internet service', 'No internet service', 'No internet service', 'Month-to-month', 'No', 'Mailed check', '20.40', '181.80'],
['No', 'No', 'No', '27', 'DSL', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'One year', 'No', 'Electronic check', '81.70', '2212.55']],
inputs=input_components)
#start gradio app
block.launch(
auth=("azubiafrica", "teamcapecod"),
auth_message="Enter the username 'azubiafrica' and password 'teamcapecod' for this demo app"
)
|