{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ef74b133080>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690917981557398996, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMHaTT6I1vY+xc/ZPrw2ND8V7Lg/e99ewJWTHT8i/tu+TBovv6aRLr5FZVU+Z2vgPw/4hz3FSdm/qJTPPnxxFEBszGI/v4E/PkLX8D5GviU/UOHVvgxDvj9H78y+rJ5Cv0cCk79XD/i/4p2oPlhcoL+7WRK/KRkNPkDpDj8F9QI+m/23vvD/rz7brvS/gINKP94iUT//dT4/UxTcv+pCxzyZ/1W/jMo0vmRfxz9466M9jMvAPpiIQr4vmADAcCWrPsmxyz+et5S8kONBPnPdlD7o5V4/3BgEP+KdqD7eVkw/uOjIvotqpD+XVr6+SlyqP4FWmz+bolI/T4DoPrMuO7/C0fS/W4WOPhTP0D9okoc+EA7Ev6NsOD8dNbO+LzUzv1W63r20W5q+zTuCPxVFU77GRTk/26p8PyA6Kj6TPvM/6OVeP1cP+L/inag+WFygv+tQzL4Qi5Y/7KJavrV4jT/dbL4/LIUZP6B3Bj/qlDu/Uiryv6X6tz2l1uE/D1bdvhJkwL+EG6I++PHOvic+Nb/5hTE+9nwuv7HrgD9xOxu9p86sPxYqej+h2s0+7HUxQOjlXj/cGAQ/4p2oPlhcoL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADs2342AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiSSHPAAAAABMpvS/AAAAAP61Gr0AAAAAlxffPwAAAADSyc09AAAAAPEJAUAAAAAAVdgCvgAAAADJ396/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+GyRtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOYB/z0AAAAAzvDqvwAAAACjOQA9AAAAACUR7j8AAAAAYESTvQAAAABwI/Q/AAAAALQXyjwAAAAA2c70vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKWwVzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBNV429AAAAANzo+r8AAAAAr0IcvAAAAADYjPc/AAAAADzTnz0AAAAAhuX6PwAAAACQBiS7AAAAAB2gAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJD2a1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACL7XvQAAAAAK7++/AAAAAI6xs70AAAAAvj3cPwAAAAAKJpS9AAAAAGJV/T8AAAAAZNNRvAAAAADYeu+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwtwsd1dPeMAWyUTegDjAF0lEdApvFBX2dupHV9lChoBkdAndwPqoqCpWgHTegDaAhHQKbzpoTPBzp1fZQoaAZHQJtjfOqvNeNoB03oA2gIR0Cm9jxq46OpdX2UKGgGR0CeHmgqEvkBaAdN6ANoCEdApvb+NFSbY3V9lChoBkdAnM57QTmGNGgHTegDaAhHQKb9GsijcmB1fZQoaAZHQJxyKjnFHaxoB03oA2gIR0Cm/5xArxy5dX2UKGgGR0CcghWfbsWwaAdN6ANoCEdApwI95GBnSXV9lChoBkdAnctW/etSymgHTegDaAhHQKcC/OhTOxB1fZQoaAZHQJs7UvqTr3VoB03oA2gIR0CnCSUrK/21dX2UKGgGR0CcXMrVvuPWaAdN6ANoCEdApwuaw0O3D3V9lChoBkdAm4wqBRQ792gHTegDaAhHQKcOMpWFN+N1fZQoaAZHQJtIyJQ+EAZoB03oA2gIR0CnDvPybx3FdX2UKGgGR0CbXt8yvcJuaAdN6ANoCEdApxUdet0V8HV9lChoBkdAmOSm8Empl2gHTegDaAhHQKcXnel9Brx1fZQoaAZHQJkDq1twaR9oB03oA2gIR0CnGkW+wkgPdX2UKGgGR0Cc2+XPqs2faAdN6ANoCEdApxsGD8LronV9lChoBkdAnbbPKdQO4GgHTegDaAhHQKchN0PpY9x1fZQoaAZHQJt7wWTHKfZoB03oA2gIR0CnI6bu2JBPdX2UKGgGR0CZRqJ2dNFjaAdN6ANoCEdApyY0vTPSlXV9lChoBkdAmUeWJ3xFzGgHTegDaAhHQKcm9OSGJvZ1fZQoaAZHQJhwOMERradoB03oA2gIR0CnLQOR1X/6dX2UKGgGR0Cbr6IvalDXaAdN6ANoCEdApy+Jb2USqXV9lChoBkdAmUC42sJY1mgHTegDaAhHQKcyO47zTWp1fZQoaAZHQJnocQ6IWP9oB03oA2gIR0CnMvuk+HJtdX2UKGgGR0CagMbRWtEHaAdN6ANoCEdApzkK3solU3V9lChoBkdAm6V/BBRht2gHTegDaAhHQKc7ZyCnP3V1fZQoaAZHQJ5Xt2V3Ux5oB03oA2gIR0CnPf4G2TgVdX2UKGgGR0Cd2zVQAMlUaAdN6ANoCEdApz680rK/23V9lChoBkdAnGJErTYukGgHTegDaAhHQKdE3FXJYDF1fZQoaAZHQJ3Yl2Pkq+doB03oA2gIR0CnR4MefZmJdX2UKGgGR0CcaUPN3W4FaAdN6ANoCEdAp0o5lvqC6HV9lChoBkdAmrvkPczqKWgHTegDaAhHQKdK+UIsyzp1fZQoaAZHQJgkdWsA/9poB03oA2gIR0CnUQmWD6FedX2UKGgGR0CaPC5wfhddaAdN6ANoCEdAp1NtiYsunXV9lChoBkdAmN2xFmWdE2gHTegDaAhHQKdV+fU4JeF1fZQoaAZHQJmQkx33YcxoB03oA2gIR0CnVr9ld1MedX2UKGgGR0CXMTB19v0iaAdN6ANoCEdAp1zb/ffoBHV9lChoBkdAlfRFCTlkpmgHTegDaAhHQKdfW+10DEF1fZQoaAZHQJVatz1bqyJoB03oA2gIR0CnYhsK9f1IdX2UKGgGR0CXs487ZFodaAdN6ANoCEdAp2LZ/gBLf3V9lChoBkdAmxmFFlTWG2gHTegDaAhHQKdpH46fapR1fZQoaAZHQJlI2yWzF/BoB03oA2gIR0Cna4SBkI5YdX2UKGgGR0CbYL44Ia99aAdN6ANoCEdAp24XWH1vl3V9lChoBkdAml9GE0zj3mgHTegDaAhHQKdu2FM7EHd1fZQoaAZHQJ131Fqi48VoB03oA2gIR0CndOrSuyNXdX2UKGgGR0CddNdcSoOyaAdN6ANoCEdAp3dbofSx7nV9lChoBkdAniLXeFcps2gHTegDaAhHQKd6E8fV7Qd1fZQoaAZHQJvEC3Sa3JBoB03oA2gIR0CnetepOvdNdX2UKGgGR0CbFBf2bobGaAdN6ANoCEdAp4D31anrIHV9lChoBkdAnJA1Q2uPm2gHTegDaAhHQKeDfs7+1jR1fZQoaAZHQJmu5JXhfjVoB03oA2gIR0Cnhg2Dxsl+dX2UKGgGR0CdM2ifQKKHaAdN6ANoCEdAp4bN7OVxCXV9lChoBkdAm3GGNNrTIGgHTegDaAhHQKeM5jhky1x1fZQoaAZHQJx+ooZydWhoB03oA2gIR0Cnj1P+4smOdX2UKGgGR0Cb82la8pTdaAdN6ANoCEdAp5IPx+az/3V9lChoBkdAnh1iwGGEf2gHTegDaAhHQKeS4f+S8rZ1fZQoaAZHQJylRe2NNrVoB03oA2gIR0CnmQMs6JZXdX2UKGgGR0CcnmwHZ9NOaAdN6ANoCEdAp5uCj59E1HV9lChoBkdAnZdRTsIE82gHTegDaAhHQKeeDqv/zat1fZQoaAZHQJFUZutOmBRoB03oA2gIR0CnnszFl05mdX2UKGgGR0CUir+Eh7mdaAdN6ANoCEdAp6T1kOI683V9lChoBkdAn6fv7N0NjWgHTegDaAhHQKenZtVJcxF1fZQoaAZHQJ6ixNzr/sFoB03oA2gIR0Cnqg7xEv0zdX2UKGgGR0CfX987p3X7aAdN6ANoCEdAp6rcrqdH2HV9lChoBkdAoC7Fz+3pfWgHTegDaAhHQKexDN21Ul11fZQoaAZHQJ3x2iItUXJoB03oA2gIR0Cns3BKtga4dX2UKGgGR0CfM7OearmyaAdN6ANoCEdAp7YLPMSsbXV9lChoBkdAnxyQcghbGGgHTegDaAhHQKe2zkzXSSh1fZQoaAZHQJ9q6BSUC7toB03oA2gIR0CnvQIgFHJ+dX2UKGgGR0CeEvvHcUM5aAdN6ANoCEdAp7+TesPrfXV9lChoBkdAm2Z/kFOfumgHTegDaAhHQKfCV15jYqZ1fZQoaAZHQJjHOWKMvRJoB03oA2gIR0CnwysZYPoWdX2UKGgGR0CcY+kVeruIaAdN6ANoCEdAp8lVFjNILHV9lChoBkdAnFspE2HclGgHTegDaAhHQKfLwphF3IN1fZQoaAZHQJxWKPT5O8FoB03oA2gIR0CnzklyR0U5dX2UKGgGR0CdQlbSZ0CBaAdN6ANoCEdAp88GqHXVb3V9lChoBkdAm2PYmG/N7mgHTegDaAhHQKfVIfukUK11fZQoaAZHQJ7c2mixmkFoB03oA2gIR0Cn143AVO9GdX2UKGgGR0Ccn8Dye7L/aAdN6ANoCEdAp9o5R64Ue3V9lChoBkdAmoTJoCdSVGgHTegDaAhHQKfbAggX/HZ1fZQoaAZHQJhhsZBLPD5oB03oA2gIR0Cn4WD7ZWaMdX2UKGgGR0CfFxYwIt17aAdN6ANoCEdAp+O8+kgwGnV9lChoBkdAnbXjjin5z2gHTegDaAhHQKfmSc81XNl1fZQoaAZHQKBJlixVyWBoB03oA2gIR0Cn5wm4y44IdX2UKGgGR0Cb6sb+Lm6oaAdN6ANoCEdAp+0vTI/7i3V9lChoBkdAm+genAIppmgHTegDaAhHQKfvjZpztC11fZQoaAZHQJ23RfOUt7NoB03oA2gIR0Cn8i95IH1OdX2UKGgGR0Cfg3hr30wraAdN6ANoCEdAp/L5byH2y3V9lChoBkdAn8uuSbH6uWgHTegDaAhHQKf5LrAxi5N1fZQoaAZHQJ5i0WcjJMhoB03oA2gIR0Cn+51DKHO9dX2UKGgGR0CY7UD50r9VaAdN6ANoCEdAp/5DCxeLN3V9lChoBkdAn1JmIwdsBWgHTegDaAhHQKf/B/tIClt1fZQoaAZHQJ1qh5le4TdoB03oA2gIR0CoBT9YW+GodX2UKGgGR0CehOS3LFGYaAdN6ANoCEdAqAeofwI+n3V9lChoBkdAnaxfitJWemgHTegDaAhHQKgKVnBciW51fZQoaAZHQJ3uaJTER8NoB03oA2gIR0CoCx+R5kbxdX2UKGgGR0CR4Q3+MqBmaAdN6ANoCEdAqBFcj5bhWHV9lChoBkdAm0osSbpeNWgHTegDaAhHQKgT1hE0BOp1fZQoaAZHQJOCnmknCwdoB03oA2gIR0CoFmqwQlKLdX2UKGgGR0CY/lMVDa4+aAdN6ANoCEdAqBcuAXl8xHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}