--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: d31b7bd2-26f5-4953-a736-c12b149775f4 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: true chat_template: llama3 datasets: - data_files: - f48023ef1ce8bca6_train_data.json ds_type: json format: custom path: /workspace/input_data/f48023ef1ce8bca6_train_data.json type: field_input: input field_instruction: instructions field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso01/d31b7bd2-26f5-4953-a736-c12b149775f4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 80GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/f48023ef1ce8bca6_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d31b7bd2-26f5-4953-a736-c12b149775f4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d31b7bd2-26f5-4953-a736-c12b149775f4 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# d31b7bd2-26f5-4953-a736-c12b149775f4 This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3688 | 0.0078 | 1 | nan | | 10.3509 | 0.0700 | 9 | nan | | 10.2935 | 0.1401 | 18 | nan | | 10.343 | 0.2101 | 27 | nan | | 10.3251 | 0.2802 | 36 | nan | | 10.3591 | 0.3502 | 45 | nan | | 10.2841 | 0.4202 | 54 | nan | | 10.3218 | 0.4903 | 63 | nan | | 10.2672 | 0.5603 | 72 | nan | | 10.3287 | 0.6304 | 81 | nan | | 10.3197 | 0.7004 | 90 | nan | | 10.3151 | 0.7704 | 99 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1