--- library_name: peft base_model: NousResearch/Yarn-Llama-2-13b-128k tags: - axolotl - generated_from_trainer model-index: - name: f34d5de7-5900-4cac-9129-69fb41d0db86 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-13b-128k bf16: true chat_template: llama3 datasets: - data_files: - 955bd35488d15e31_train_data.json ds_type: json field: title path: /workspace/input_data/955bd35488d15e31_train_data.json type: completion debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso04/f34d5de7-5900-4cac-9129-69fb41d0db86 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/955bd35488d15e31_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f34d5de7-5900-4cac-9129-69fb41d0db86 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f34d5de7-5900-4cac-9129-69fb41d0db86 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# f34d5de7-5900-4cac-9129-69fb41d0db86 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-13b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-13b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.2804 | 0.0001 | 1 | 3.6915 | | 6.6761 | 0.0007 | 9 | 3.1253 | | 4.9393 | 0.0013 | 18 | 2.5066 | | 4.6914 | 0.0020 | 27 | 2.3536 | | 4.6689 | 0.0027 | 36 | 2.2815 | | 4.5006 | 0.0033 | 45 | 2.2529 | | 4.5399 | 0.0040 | 54 | 2.2302 | | 4.2416 | 0.0047 | 63 | 2.2146 | | 4.1861 | 0.0054 | 72 | 2.2027 | | 4.1997 | 0.0060 | 81 | 2.1964 | | 4.4412 | 0.0067 | 90 | 2.1938 | | 4.3099 | 0.0074 | 99 | 2.1933 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1