---
library_name: peft
base_model: NousResearch/Yarn-Llama-2-13b-128k
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f34d5de7-5900-4cac-9129-69fb41d0db86
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/Yarn-Llama-2-13b-128k
bf16: true
chat_template: llama3
datasets:
- data_files:
- 955bd35488d15e31_train_data.json
ds_type: json
field: title
path: /workspace/input_data/955bd35488d15e31_train_data.json
type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso04/f34d5de7-5900-4cac-9129-69fb41d0db86
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/955bd35488d15e31_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f34d5de7-5900-4cac-9129-69fb41d0db86
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f34d5de7-5900-4cac-9129-69fb41d0db86
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
```
# f34d5de7-5900-4cac-9129-69fb41d0db86
This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-13b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-13b-128k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1933
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 7.2804 | 0.0001 | 1 | 3.6915 |
| 6.6761 | 0.0007 | 9 | 3.1253 |
| 4.9393 | 0.0013 | 18 | 2.5066 |
| 4.6914 | 0.0020 | 27 | 2.3536 |
| 4.6689 | 0.0027 | 36 | 2.2815 |
| 4.5006 | 0.0033 | 45 | 2.2529 |
| 4.5399 | 0.0040 | 54 | 2.2302 |
| 4.2416 | 0.0047 | 63 | 2.2146 |
| 4.1861 | 0.0054 | 72 | 2.2027 |
| 4.1997 | 0.0060 | 81 | 2.1964 |
| 4.4412 | 0.0067 | 90 | 2.1938 |
| 4.3099 | 0.0074 | 99 | 2.1933 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1