--- library_name: peft license: gemma base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2 tags: - axolotl - generated_from_trainer model-index: - name: da6ad792-6af4-4d1a-87de-22a8c8d6b659 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2 bf16: true chat_template: llama3 datasets: - data_files: - dddbf8e7d54a75f6_train_data.json ds_type: json format: custom path: /workspace/input_data/dddbf8e7d54a75f6_train_data.json type: field_input: sentence1 field_instruction: lang field_output: sentence2 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso05/da6ad792-6af4-4d1a-87de-22a8c8d6b659 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 2.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/dddbf8e7d54a75f6_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: da6ad792-6af4-4d1a-87de-22a8c8d6b659 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: da6ad792-6af4-4d1a-87de-22a8c8d6b659 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# da6ad792-6af4-4d1a-87de-22a8c8d6b659 This model is a fine-tuned version of [UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.5026 | 0.0031 | 1 | 5.6773 | | 5.9518 | 0.0280 | 9 | 5.4173 | | 4.4737 | 0.0561 | 18 | 4.7145 | | 4.5905 | 0.0841 | 27 | 4.3695 | | 3.8766 | 0.1121 | 36 | 4.1239 | | 3.4413 | 0.1402 | 45 | 3.9922 | | 3.9298 | 0.1682 | 54 | 3.9214 | | 3.8424 | 0.1963 | 63 | 3.8768 | | 3.8283 | 0.2243 | 72 | 3.8491 | | 3.7625 | 0.2523 | 81 | 3.8330 | | 3.7588 | 0.2804 | 90 | 3.8270 | | 3.7161 | 0.3084 | 99 | 3.8258 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1