---
library_name: peft
license: apache-2.0
base_model: TinyLlama/TinyLlama_v1.1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: dcb08398-57c6-4131-8f1f-87cf76e51d95
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: TinyLlama/TinyLlama_v1.1
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 4ee47541e3bf9f11_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/4ee47541e3bf9f11_train_data.json
  type:
    field_input: pos
    field_instruction: anchor
    field_output: hard_neg
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso06/dcb08398-57c6-4131-8f1f-87cf76e51d95
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 25
micro_batch_size: 4
mlflow_experiment_name: /tmp/4ee47541e3bf9f11_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: dcb08398-57c6-4131-8f1f-87cf76e51d95
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: dcb08398-57c6-4131-8f1f-87cf76e51d95
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

```

</details><br>

# dcb08398-57c6-4131-8f1f-87cf76e51d95

This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.8866

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 25

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.9339        | 0.0000 | 1    | 5.8913          |
| 6.1192        | 0.0001 | 4    | 5.9010          |
| 5.9732        | 0.0002 | 8    | 5.7895          |
| 5.5067        | 0.0004 | 12   | 5.5012          |
| 5.2956        | 0.0005 | 16   | 5.1779          |
| 4.8619        | 0.0006 | 20   | 4.9356          |
| 4.4966        | 0.0007 | 24   | 4.8866          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1