File size: 2,974 Bytes
2d79e5a 7225dc5 2d79e5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: sagemaker-distilbert-emotion-1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9325
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9325
verified: true
- name: Precision Macro
type: precision
value: 0.8890885758596073
verified: true
- name: Precision Micro
type: precision
value: 0.9325
verified: true
- name: Precision Weighted
type: precision
value: 0.9357939294839482
verified: true
- name: Recall Macro
type: recall
value: 0.9037949715525094
verified: true
- name: Recall Micro
type: recall
value: 0.9325
verified: true
- name: Recall Weighted
type: recall
value: 0.9325
verified: true
- name: F1 Macro
type: f1
value: 0.8917817566377219
verified: true
- name: F1 Micro
type: f1
value: 0.9325
verified: true
- name: F1 Weighted
type: f1
value: 0.932691644399741
verified: true
- name: loss
type: loss
value: 0.16507503390312195
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sagemaker-distilbert-emotion-1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1651
- Accuracy: 0.9325
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.966 | 1.0 | 500 | 0.2497 | 0.921 |
| 0.1913 | 2.0 | 1000 | 0.1651 | 0.9325 |
| 0.1037 | 3.0 | 1500 | 0.1501 | 0.9285 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|