--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion-1 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9325 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.9325 verified: true - name: Precision Macro type: precision value: 0.8890885758596073 verified: true - name: Precision Micro type: precision value: 0.9325 verified: true - name: Precision Weighted type: precision value: 0.9357939294839482 verified: true - name: Recall Macro type: recall value: 0.9037949715525094 verified: true - name: Recall Micro type: recall value: 0.9325 verified: true - name: Recall Weighted type: recall value: 0.9325 verified: true - name: F1 Macro type: f1 value: 0.8917817566377219 verified: true - name: F1 Micro type: f1 value: 0.9325 verified: true - name: F1 Weighted type: f1 value: 0.932691644399741 verified: true - name: loss type: loss value: 0.16507503390312195 verified: true --- # sagemaker-distilbert-emotion-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1651 - Accuracy: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.966 | 1.0 | 500 | 0.2497 | 0.921 | | 0.1913 | 2.0 | 1000 | 0.1651 | 0.9325 | | 0.1037 | 3.0 | 1500 | 0.1501 | 0.9285 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3