File size: 2,970 Bytes
e928315 d64ae56 e928315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: sagemaker-distilbert-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.921
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.921
verified: true
- name: Precision Macro
type: precision
value: 0.8870419502496194
verified: true
- name: Precision Micro
type: precision
value: 0.921
verified: true
- name: Precision Weighted
type: precision
value: 0.9208079974712109
verified: true
- name: Recall Macro
type: recall
value: 0.8688429370077566
verified: true
- name: Recall Micro
type: recall
value: 0.921
verified: true
- name: Recall Weighted
type: recall
value: 0.921
verified: true
- name: F1 Macro
type: f1
value: 0.87642650638535
verified: true
- name: F1 Micro
type: f1
value: 0.9209999999999999
verified: true
- name: F1 Weighted
type: f1
value: 0.9203938811554648
verified: true
- name: loss
type: loss
value: 0.23217058181762695
verified: true
- name: matthews_correlation
type: matthews_correlation
value: 0.8955235167115958
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sagemaker-distilbert-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2322
- Accuracy: 0.921
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9306 | 1.0 | 500 | 0.2322 | 0.921 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|