File size: 2,369 Bytes
8d44bde
 
 
 
 
 
 
 
68e2cbf
 
 
 
 
 
5c498ac
 
 
 
 
68e2cbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d44bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- lewtun/autotrain-data-my-eval-project-615
co2_eq_emissions: 172.04481351504182
model-index:
- name: bhadresh-savani/distilbert-base-uncased-emotion
  results:
  - task:
      name: Multi-class Classification
      type: text-classification
    dataset:
      type: emotion
      name: Emotion
      config: default
      split: test
    metrics:
       - name: Loss
         type: loss
         value: 0.17404702305793762
       - name: Accuracy
         type: accuracy
         value: 0.927
       - name: Macro F1
         type: macro_f1
         value: 0.8825061528287809
       - name: Recall
         type: micro_f1
         value: 0.927
       - name: Weighted F1
         type: weighted_f1
         value: 0.926876082854655
       - name: Macro Precision
         type: macro_precision
         value: 0.8880230732280744
       - name: Micro Precision
         type: micro_precision
         value: 0.927
       - name: Weighted Precision
         type: weighted_precision
         value: 0.9272902840835793
       - name: Macro Recall
         type: macro_recall
         value: 0.8790126653780703
       - name: Micro Recall
         type: micro_recall
         value: 0.927
       - name: Weighted Recall
         type: weighted_recall
         value: 0.927
---

# Model Trained Using AutoTrain

- Problem type: Binary Classification
- Model ID: 5694363
- CO2 Emissions (in grams): 172.04481351504182

## Validation Metrics

- Loss: 0.2228243350982666
- Accuracy: 0.9298
- Precision: 0.9434585224927775
- Recall: 0.9144
- AUC: 0.9566112000000001
- F1: 0.9287020109689214

## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lewtun/autotrain-my-eval-project-615-5694363
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("lewtun/autotrain-my-eval-project-615-5694363", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("lewtun/autotrain-my-eval-project-615-5694363", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```