File size: 1,755 Bytes
82ce6a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- FreeSound
metrics:
- wer
model-index:
- name: Whisper Tiny En - FreeSound based captions test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny En - FreeSound based captions test
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the FreeSound Audio dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8548
- Wer: 98.5500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 5.2273 | 0.6098 | 25 | 4.9782 | 101.4246 |
| 4.0984 | 1.2195 | 50 | 4.1433 | 100.8904 |
| 3.8301 | 1.8293 | 75 | 3.9157 | 99.3132 |
| 3.7081 | 2.4390 | 100 | 3.8548 | 98.5500 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.1.0+cu118
- Datasets 3.0.1
- Tokenizers 0.20.1
|