File size: 1,945 Bytes
82ce6a6
 
 
 
 
 
 
 
 
 
 
 
 
a17d1c4
82ce6a6
 
 
 
 
 
a17d1c4
82ce6a6
 
 
a17d1c4
 
82ce6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a17d1c4
 
82ce6a6
 
 
 
a17d1c4
 
 
 
 
 
 
 
 
82ce6a6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- FreeSound
metrics:
- wer
model-index:
- name: Whisper Tiny En - FreeSound based captions
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny En - FreeSound based captions

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the FreeSound Audio dataset.
It achieves the following results on the evaluation set:
- Loss: 5.5085
- Wer: 91.7867

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 7000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Wer     |
|:-------------:|:--------:|:----:|:---------------:|:-------:|
| 0.8757        | 24.3902  | 1000 | 4.1235          | 97.8963 |
| 0.0518        | 48.7805  | 2000 | 4.8741          | 94.9280 |
| 0.0234        | 73.1707  | 3000 | 5.1544          | 93.1124 |
| 0.0148        | 97.5610  | 4000 | 5.3503          | 93.4294 |
| 0.0141        | 121.9512 | 5000 | 5.4099          | 92.3631 |
| 0.0112        | 146.3415 | 6000 | 5.4837          | 92.4496 |
| 0.0104        | 170.7317 | 7000 | 5.5085          | 91.7867 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.1.0+cu118
- Datasets 3.0.1
- Tokenizers 0.20.1