File size: 6,324 Bytes
88b0e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b0e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
language: pt
datasets:
- common_voice 
- mls
- cetuc
- lapsbm
- voxforge
metrics:
- wer
tags:
- audio
- speech
- wav2vec2
- pt
- portuguese-speech-corpus
- automatic-speech-recognition
- speech
- PyTorch
- hf-asr-leaderboard
model-index:
- name: wav2vec2-large-xlsr-open-brazilian-portuguese-v2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 
      type: common_voice
      args: pt
    metrics:
    - name: Test WER
      type: wer
      value: 10.69
license: apache-2.0
---

# Wav2vec 2.0 With Open Brazilian Portuguese Datasets v2

This a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the following datasets:

- [CETUC](http://www02.smt.ufrj.br/~igor.quintanilha/alcaim.tar.gz): contains approximately 145 hours of Brazilian Portuguese speech distributed among 50 male and 50 female speakers, each pronouncing approximately 1,000 phonetically balanced sentences selected from the [CETEN-Folha](https://www.linguateca.pt/cetenfolha/) corpus.
- [Multilingual Librispeech (MLS)](https://arxiv.org/abs/2012.03411): a massive dataset available in many languages. The MLS is based on audiobook recordings in public domain like [LibriVox](https://librivox.org/). The dataset contains a total of 6k hours of transcribed data in many languages. The set in Portuguese [used in this work](http://www.openslr.org/94/) (mostly Brazilian variant) has approximately 284 hours of speech, obtained from 55 audiobooks read by 62 speakers.
- [VoxForge](http://www.voxforge.org/): is a project with the goal to build open datasets for acoustic models. The corpus contains approximately 100 speakers and 4,130 utterances of Brazilian Portuguese, with sample rates varying from 16kHz to 44.1kHz.
- [Common Voice 6.1](https://commonvoice.mozilla.org/pt): is a project proposed by Mozilla Foundation with the goal to create a wide open dataset in different languages to train ASR models. In this project, volunteers donate and validate speech using the [oficial site](https://commonvoice.mozilla.org/pt). The set in Portuguese (mostly Brazilian variant) used in this work is the 6.1 version (pt_63h_2020-12-11) that contains about 50 validated hours and 1,120 unique speakers.
- [Lapsbm](https://github.com/falabrasil/gitlab-resources): "Falabrasil - UFPA" is a dataset used by the Fala Brasil group to benchmark ASR systems in Brazilian Portuguese. Contains 35 speakers (10 females), each one pronouncing 20 unique sentences, totalling  700 utterances in Brazilian Portuguese. The audios were recorded in 22.05 kHz without environment control.

These datasets were combined to build a larger Brazilian Portuguese dataset. All data was used for training except Common Voice dev/test sets, that were used for validation/test respectively.

The original model was fine-tuned using [fairseq](https://github.com/pytorch/fairseq). This notebook uses a converted version of the original one.

__NOTE: The common voice test reports 10% of WER, however, this model was trained using all the validated instances of Common Voice, except the instances of the test set. This means that some speakers of the train set can be present on the test set.__

## Imports and dependencies


```python
%%capture
!pip install datasets
!pip install jiwer
!pip install torchaudio
!pip install transformers
!pip install soundfile
```


```python
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
    Wav2Vec2ForCTC,
    Wav2Vec2Processor,
)
import torch
import re
import sys
```

## Preparation


```python
chars_to_ignore_regex = '[\,\?\.\!\;\:\"]'  # noqa: W605
wer = load_metric("wer")
device = "cuda"
```


```python
model_name = 'lgris/wav2vec2-large-xlsr-open-brazilian-portuguese-v2'
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_name)
```


```python
def map_to_pred(batch):
    features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
    input_values = features.input_values.to(device)
    attention_mask = features.attention_mask.to(device)
    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits
    pred_ids = torch.argmax(logits, dim=-1)
    batch["predicted"] = processor.batch_decode(pred_ids)
    batch["predicted"] = [pred.lower() for pred in batch["predicted"]]
    batch["target"] = batch["sentence"]
    return batch
```

## Tests

### Test against Common Voice (In-domain)


```python
dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11")

resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)

def map_to_array(batch):
    speech, _ = torchaudio.load(batch["path"])
    batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
    batch["sampling_rate"] = resampler.new_freq
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
    return batch
```


```python
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
for pred, target in zip(result["predicted"][:10], result["target"][:10]):
    print(pred, "|", target) 
```

**Result**: 10.69%

### Test against [TEDx](http://www.openslr.org/100/) (Out-of-domain)


```python
!gdown --id 1HJEnvthaGYwcV_whHEywgH2daIN4bQna
!tar -xf tedx.tar.gz
```


```python
dataset = load_dataset('csv', data_files={'test': 'test.csv'})['test']

def map_to_array(batch):
    speech, _ = torchaudio.load(batch["path"])
    batch["speech"] = speech.squeeze(0).numpy()
    batch["sampling_rate"] = resampler.new_freq
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
    return batch
```


```python
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
for pred, target in zip(result["predicted"][:10], result["target"][:10]):
    print(pred, "|", target) 
```

**Result**: 34.53%