arubenruben
commited on
Commit
•
9941bd6
1
Parent(s):
224f9e1
commit files to HF hub
Browse files- config.json +9 -0
- model.safetensors +1 -1
- srl.py +130 -0
- tokenizer.json +3 -15
- tokenizer_config.json +1 -1
config.json
CHANGED
@@ -4,6 +4,15 @@
|
|
4 |
"DebertaForTokenClassification"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
"hidden_act": "gelu",
|
8 |
"hidden_dropout_prob": 0.1,
|
9 |
"hidden_size": 768,
|
|
|
4 |
"DebertaForTokenClassification"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"custom_pipelines": {
|
8 |
+
"srl": {
|
9 |
+
"impl": "srl.SRLPipeline",
|
10 |
+
"pt": [
|
11 |
+
"AutoModelForTokenClassification"
|
12 |
+
],
|
13 |
+
"tf": []
|
14 |
+
}
|
15 |
+
},
|
16 |
"hidden_act": "gelu",
|
17 |
"hidden_dropout_prob": 0.1,
|
18 |
"hidden_size": 768,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 554618516
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c9f753a87fed0bc07db2ef6b4fabd8976f055b8a27155218dac9965f5bef6ef
|
3 |
size 554618516
|
srl.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spacy
|
2 |
+
import numpy as np
|
3 |
+
from transformers import Pipeline
|
4 |
+
|
5 |
+
|
6 |
+
class SRLPipeline(Pipeline):
|
7 |
+
|
8 |
+
def __init__(self, *args, **kwargs):
|
9 |
+
super().__init__(*args, **kwargs)
|
10 |
+
|
11 |
+
spacy.prefer_gpu()
|
12 |
+
|
13 |
+
if not spacy.util.is_package("pt_core_news_sm"):
|
14 |
+
spacy.cli.download("pt_core_news_sm")
|
15 |
+
|
16 |
+
self.nlp = spacy.load("pt_core_news_sm")
|
17 |
+
|
18 |
+
def align_labels_with_tokens(self, tokenized_inputs, all_labels):
|
19 |
+
results = []
|
20 |
+
|
21 |
+
for i, labels in enumerate(all_labels):
|
22 |
+
word_ids = tokenized_inputs.word_ids(batch_index=i)
|
23 |
+
type_ids = tokenized_inputs[i].type_ids
|
24 |
+
|
25 |
+
num_special_tokens = len(
|
26 |
+
[type_id for type_id in type_ids if type_id != 0])
|
27 |
+
|
28 |
+
if num_special_tokens > 0:
|
29 |
+
word_ids = word_ids[:-num_special_tokens]
|
30 |
+
|
31 |
+
new_labels = []
|
32 |
+
current_word = None
|
33 |
+
|
34 |
+
for word_id in word_ids:
|
35 |
+
|
36 |
+
if word_id != current_word:
|
37 |
+
# Start of a new word!
|
38 |
+
current_word = word_id
|
39 |
+
label = -100 if word_id is None else labels[word_id]
|
40 |
+
new_labels.append(label)
|
41 |
+
elif word_id is None:
|
42 |
+
# Special token
|
43 |
+
new_labels.append(-100)
|
44 |
+
else:
|
45 |
+
"""
|
46 |
+
# Same word as previous token
|
47 |
+
label = labels[word_id]
|
48 |
+
# If the label is B-XXX we change it to I-XXX
|
49 |
+
if label % 2 == 1:
|
50 |
+
label += 1
|
51 |
+
"""
|
52 |
+
new_labels.append(-100)
|
53 |
+
|
54 |
+
results.append(new_labels)
|
55 |
+
|
56 |
+
tokenized_inputs['labels'] = results
|
57 |
+
|
58 |
+
return tokenized_inputs
|
59 |
+
|
60 |
+
def _sanitize_parameters(self, **kwargs):
|
61 |
+
preprocess_kwargs = {}
|
62 |
+
|
63 |
+
if "verb" in kwargs:
|
64 |
+
preprocess_kwargs["verb"] = kwargs["verb"]
|
65 |
+
|
66 |
+
return preprocess_kwargs, {}, {}
|
67 |
+
|
68 |
+
def preprocess(self, text):
|
69 |
+
|
70 |
+
self.text = text
|
71 |
+
|
72 |
+
doc = self.nlp(text.strip())
|
73 |
+
|
74 |
+
self.label_names = self.model.config.id2label
|
75 |
+
|
76 |
+
# Extract list with verbs from the text
|
77 |
+
self.verbs = [token.text for token in doc if token.pos_ == "VERB"]
|
78 |
+
|
79 |
+
results = []
|
80 |
+
|
81 |
+
tokenized_input = [token.text for token in doc]
|
82 |
+
raw_labels = [0] * len(tokenized_input)
|
83 |
+
|
84 |
+
for verb in self.verbs:
|
85 |
+
tokenized_results = self.tokenizer(
|
86 |
+
tokenized_input, [verb], truncation=True,
|
87 |
+
is_split_into_words=True,
|
88 |
+
return_tensors="pt", max_length=self.model.config.max_position_embeddings)
|
89 |
+
|
90 |
+
tokenized_results = self.align_labels_with_tokens(
|
91 |
+
tokenized_inputs=tokenized_results, all_labels=[raw_labels])
|
92 |
+
|
93 |
+
self.labels = tokenized_results["labels"]
|
94 |
+
|
95 |
+
# Remove labels temporarily to avoid conflicts in the forward pass
|
96 |
+
tokenized_results.pop("labels")
|
97 |
+
|
98 |
+
results.append(tokenized_results)
|
99 |
+
|
100 |
+
return results
|
101 |
+
|
102 |
+
def _forward(self, batch_inputs):
|
103 |
+
results = []
|
104 |
+
|
105 |
+
for entry in batch_inputs:
|
106 |
+
results.append(self.model(**entry))
|
107 |
+
|
108 |
+
return results
|
109 |
+
|
110 |
+
def postprocess(self, batch_outputs):
|
111 |
+
outputs = []
|
112 |
+
|
113 |
+
for i, entry in enumerate(batch_outputs):
|
114 |
+
logits = entry.logits
|
115 |
+
|
116 |
+
predictions = np.argmax(logits, axis=-1).squeeze().tolist()
|
117 |
+
|
118 |
+
true_predictions = []
|
119 |
+
|
120 |
+
for prediction, label in zip(predictions, self.labels[0]):
|
121 |
+
if label != -100:
|
122 |
+
true_predictions.append(self.label_names[prediction])
|
123 |
+
|
124 |
+
outputs.append({
|
125 |
+
"tokens": self.text.split(),
|
126 |
+
"predictions": true_predictions,
|
127 |
+
"verb": self.verbs[i]
|
128 |
+
})
|
129 |
+
|
130 |
+
return outputs
|
tokenizer.json
CHANGED
@@ -1,19 +1,7 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
-
"truncation":
|
4 |
-
|
5 |
-
"max_length": 512,
|
6 |
-
"strategy": "LongestFirst",
|
7 |
-
"stride": 0
|
8 |
-
},
|
9 |
-
"padding": {
|
10 |
-
"strategy": "BatchLongest",
|
11 |
-
"direction": "Right",
|
12 |
-
"pad_to_multiple_of": null,
|
13 |
-
"pad_id": 0,
|
14 |
-
"pad_type_id": 0,
|
15 |
-
"pad_token": "[PAD]"
|
16 |
-
},
|
17 |
"added_tokens": [
|
18 |
{
|
19 |
"id": 0,
|
@@ -64,7 +52,7 @@
|
|
64 |
"normalizer": null,
|
65 |
"pre_tokenizer": {
|
66 |
"type": "ByteLevel",
|
67 |
-
"add_prefix_space":
|
68 |
"trim_offsets": true,
|
69 |
"use_regex": true
|
70 |
},
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
+
"truncation": null,
|
4 |
+
"padding": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 0,
|
|
|
52 |
"normalizer": null,
|
53 |
"pre_tokenizer": {
|
54 |
"type": "ByteLevel",
|
55 |
+
"add_prefix_space": false,
|
56 |
"trim_offsets": true,
|
57 |
"use_regex": true
|
58 |
},
|
tokenizer_config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"add_bos_token": false,
|
3 |
-
"add_prefix_space":
|
4 |
"added_tokens_decoder": {
|
5 |
"0": {
|
6 |
"content": "[PAD]",
|
|
|
1 |
{
|
2 |
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
"added_tokens_decoder": {
|
5 |
"0": {
|
6 |
"content": "[PAD]",
|