File size: 2,025 Bytes
b295975 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: other
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: reranker_binary_filt_train
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# reranker_binary_filt_train
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the reranker_binary_filt_train dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0526
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.0517 | 0.1000 | 1937 | 0.0871 |
| 0.114 | 0.2001 | 3874 | 0.0835 |
| 0.1033 | 0.3001 | 5811 | 0.0735 |
| 0.0544 | 0.4001 | 7748 | 0.0663 |
| 0.1169 | 0.5001 | 9685 | 0.0623 |
| 0.05 | 0.6002 | 11622 | 0.0599 |
| 0.0951 | 0.7002 | 13559 | 0.0566 |
| 0.0497 | 0.8002 | 15496 | 0.0551 |
| 0.1002 | 0.9002 | 17433 | 0.0532 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|