ptrdvn commited on
Commit
9e0722e
Β·
verified Β·
1 Parent(s): b4ebcd3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md CHANGED
@@ -8,7 +8,47 @@ model-index:
8
  workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_half_borda
9
  results: []
10
  ---
 
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
  should probably proofread and complete it, then remove this comment. -->
14
 
 
8
  workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_half_borda
9
  results: []
10
  ---
11
+ # Suzume ORPO
12
 
13
+ <p align="center">
14
+ <img width=500 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kWQSu02YfgYdUQqv4s5lq.png" alt="Suzume with Mitsu - a Japanese tree sparrow with honey on it"/>
15
+ </p>
16
+
17
+ [[Paper]](https://arxiv.org/abs/2405.18952) [[Dataset]](https://huggingface.co/datasets/lightblue/mitsu)
18
+
19
+ This is Suzume ORPO, an ORPO trained fine-tune of the [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) model using our [lightblue/mitsu](https://huggingface.co/datasets/lightblue/mitsu) dataset.
20
+
21
+ We have trained several versions of this model using ORPO and so recommend that you use the best performing model from our tests, [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half).
22
+
23
+ Note that this model has a non-commerical license as we used the Command R and Command R+ models to generate our training data for this model ([lightblue/mitsu](https://huggingface.co/datasets/lightblue/mitsu)).
24
+
25
+ We are currently working on a developing a commerically usable model, so stay tuned for that!
26
+
27
+ # Model results
28
+
29
+ We compare the MT-Bench scores across 6 languages for our 4 ORPO trained models, as well as some baselines:
30
+
31
+ * [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - The foundation model that our models are ultimately built upon
32
+ * [Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta) - The highest performing open model on the Chatbot arena that is of a similar size to ours
33
+ * gpt-3.5-turbo - A fairly high quality (although not state-of-the-art) proprietary LLM
34
+ * [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) - The base model which we train our ORPO finetunes from
35
+
36
+ | **MT-Bench language** | **meta-llama/Meta-Llama-3-8B-Instruct** | **Nexusflow/Starling-LM-7B-beta** | **gpt-3.5-turbo** | **lightblue/suzume-llama-3-8B-multilingual** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-full** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25** |
37
+ |-----------------------|-----------------------------------------|-----------------------------------|-------------------|----------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|
38
+ | **Chinese πŸ‡¨πŸ‡³** | NaN | 6.97 | 7.55 | 7.11 | 7.65 | **7.77** | 7.74 | 7.44 |
39
+ | **English πŸ‡ΊπŸ‡Έ** | 7.98 | 7.92 | **8.26** | 7.73 | 7.98 | 7.94 | 7.98 | 8.22 |
40
+ | **French πŸ‡«πŸ‡·** | NaN | 7.29 | 7.74 | 7.66 | **7.84** | 7.46 | 7.78 | 7.81 |
41
+ | **German πŸ‡©πŸ‡ͺ** | NaN | 6.99 | 7.68 | 7.26 | 7.28 | 7.64 | 7.7 | **7.71** |
42
+ | **Japanese πŸ‡―πŸ‡΅** | NaN | 6.22 | **7.84** | 6.56 | 7.2 | 7.12 | 7.34 | 7.04 |
43
+ | **Russian πŸ‡·πŸ‡Ί** | NaN | 8.28 | 7.94 | 8.19 | 8.3 | 8.74 | **8.94** | 8.81 |
44
+
45
+ We can see noticable improvement on most languages compared to the base model. We also find that our ORPO models achieve the highest score out of all the models we evaluated for a number of languages.
46
+
47
+ # Training data
48
+
49
+ We trained this model using the [lightblue/mitsu_full_borda](https://huggingface.co/datasets/lightblue/mitsu_full_borda) dataset.
50
+
51
+ # Training configuration
52
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
53
  should probably proofread and complete it, then remove this comment. -->
54