File size: 1,929 Bytes
169fa69
dcdbe08
 
 
ad1c0fc
 
169fa69
 
cae4c98
 
ad1c0fc
 
169fa69
 
09a5149
 
3b77fca
56fb6b2
 
 
0d04a56
56fb6b2
0d04a56
56fb6b2
3b77fca
56fb6b2
3b77fca
d7a1738
 
56fb6b2
3b77fca
56fb6b2
3b77fca
 
 
 
b2cfb33
3b77fca
 
 
 
0fae1c8
3b77fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d0d41
56fb6b2
02d0d41
3b77fca
 
 
 
 
56fb6b2
02d0d41
3b77fca
 
 
 
 
d7a1738
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- en
- el
- multilingual
license: apache-2.0
tags:
- translation
metrics:
- bleu
widget:
- text: '''Katerina'', is the best name for a girl.'
---

## English to Greek NMT
## By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC)

* source languages: en
* target languages: el
* licence: apache-2.0
* dataset: Opus, CCmatrix
* model: transformer(fairseq)
* pre-processing: tokenization + BPE segmentation
* metrics: bleu, chrf

### Model description

Trained using the Fairseq framework, transformer_iwslt_de_en architecture.\\
BPE segmentation (20k codes).\\
Mixed-case model. 

### How to use

```
from transformers import FSMTTokenizer, FSMTForConditionalGeneration

mname = "lighteternal/SSE-TUC-mt-en-el-cased"

tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)

text = " 'Katerina', is the best name for a girl."

encoded = tokenizer.encode(text, return_tensors='pt')

outputs = model.generate(encoded, num_beams=5, num_return_sequences=5, early_stopping=True)
for i, output in enumerate(outputs):
    i += 1
    print(f"{i}: {output.tolist()}")
    
    decoded = tokenizer.decode(output, skip_special_tokens=True)
    print(f"{i}: {decoded}")
```


## Training data

Consolidated corpus from Opus and CC-Matrix (~6.6GB in total)


## Eval results


Results on Tatoeba testset (EN-EL): 

| BLEU | chrF  |
| ------ | ------ |
| 76.9 |  0.733 |


Results on XNLI parallel (EN-EL): 

| BLEU | chrF  |
| ------ | ------ |
| 65.4 |  0.624 |

### BibTeX entry and citation info

Dimitris Papadopoulos, et al. "PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation." (2021). Accepted at EACL 2021 SRW
 

### Acknowledgement

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)