Commit
·
75ed774
1
Parent(s):
76c4d1f
Update README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
-
value:
|
25 |
---
|
26 |
|
27 |
# Greek (el) version of the XLSR-Wav2Vec2 automatic speech recognition (ASR) model
|
@@ -63,7 +63,7 @@ import numpy as np
|
|
63 |
from datasets import load_dataset, load_metric
|
64 |
import torch
|
65 |
|
66 |
-
chars_to_ignore_regex = '[
|
67 |
|
68 |
def remove_special_characters(batch):
|
69 |
batch["text"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
@@ -134,7 +134,7 @@ print("Prediction:")
|
|
134 |
print(processor.decode(pred_ids[0]))
|
135 |
# πού θέλεις να πάμε ρώτησε φοβισμένα ο βασιλιάς
|
136 |
|
137 |
-
print("
|
138 |
Reference:")
|
139 |
print(common_voice_test_transcription["sentence"][example].lower())
|
140 |
# πού θέλεις να πάμε; ρώτησε φοβισμένα ο βασιλιάς.
|
@@ -160,7 +160,7 @@ processor = Wav2Vec2Processor.from_pretrained("lighteternal/wav2vec2-large-xlsr-
|
|
160 |
model = Wav2Vec2ForCTC.from_pretrained("lighteternal/wav2vec2-large-xlsr-53-greek")
|
161 |
model.to("cuda")
|
162 |
|
163 |
-
chars_to_ignore_regex = '[
|
164 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
165 |
|
166 |
# Preprocessing the datasets.
|
@@ -189,7 +189,7 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
|
189 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
190 |
```
|
191 |
|
192 |
-
**Test Result**:
|
193 |
|
194 |
### How to use for training:
|
195 |
|
@@ -202,7 +202,7 @@ Instructions and code to replicate the process are provided in the Fine_Tune_XLS
|
|
202 |
| ----------- | ----------- |
|
203 |
| Training Loss | 0.0287 |
|
204 |
| Validation Loss | 0.6062 |
|
205 |
-
| WER on CommonVoice Test *| 0.
|
206 |
* Reference transcripts were lower-cased and striped of punctuation and special characters.
|
207 |
|
208 |
Full metrics log here:
|
|
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
+
value: 31.05
|
25 |
---
|
26 |
|
27 |
# Greek (el) version of the XLSR-Wav2Vec2 automatic speech recognition (ASR) model
|
|
|
63 |
from datasets import load_dataset, load_metric
|
64 |
import torch
|
65 |
|
66 |
+
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�]'
|
67 |
|
68 |
def remove_special_characters(batch):
|
69 |
batch["text"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
|
|
134 |
print(processor.decode(pred_ids[0]))
|
135 |
# πού θέλεις να πάμε ρώτησε φοβισμένα ο βασιλιάς
|
136 |
|
137 |
+
print("\\
|
138 |
Reference:")
|
139 |
print(common_voice_test_transcription["sentence"][example].lower())
|
140 |
# πού θέλεις να πάμε; ρώτησε φοβισμένα ο βασιλιάς.
|
|
|
160 |
model = Wav2Vec2ForCTC.from_pretrained("lighteternal/wav2vec2-large-xlsr-53-greek")
|
161 |
model.to("cuda")
|
162 |
|
163 |
+
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�]'
|
164 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
165 |
|
166 |
# Preprocessing the datasets.
|
|
|
189 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
190 |
```
|
191 |
|
192 |
+
**Test Result**: 31.05 %
|
193 |
|
194 |
### How to use for training:
|
195 |
|
|
|
202 |
| ----------- | ----------- |
|
203 |
| Training Loss | 0.0287 |
|
204 |
| Validation Loss | 0.6062 |
|
205 |
+
| WER on CommonVoice Test *| 0.3105 |
|
206 |
* Reference transcripts were lower-cased and striped of punctuation and special characters.
|
207 |
|
208 |
Full metrics log here:
|