--- language: - el tags: - pytorch - ASR --- # Greek (el) version of the XLSR-Wav2Vec2 automatic speech recognition (ASR) model * language: el * licence: apache-2.0 * dataset: CommonVoice (EL), 364MB: https://commonvoice.mozilla.org/el/datasets * model: XLSR-Wav2Vec2, trained for 60 epochs * metrics: WER ### Model description Wav2Vec2 is a pretrained model for Automatic Speech Recognition (ASR) and was released in September 2020 by Alexei Baevski, Michael Auli, and Alex Conneau. Soon after the superior performance of Wav2Vec2 was demonstrated on the English ASR dataset LibriSpeech, Facebook AI presented XLSR-Wav2Vec2. XLSR stands for cross-lingual speech representations and refers to XLSR-Wav2Vec2`s ability to learn speech representations that are useful across multiple languages. Similar to Wav2Vec2, XLSR-Wav2Vec2 learns powerful speech representations from hundreds of thousands of hours of speech in more than 50 languages of unlabeled speech. Similar, to BERT's masked language modeling, the model learns contextualized speech representations by randomly masking feature vectors before passing them to a transformer network. This model was trained on Greek CommonVoice speech data (364MB) for 30 epochs on a single NVIDIA RTX 3080, for aprox. 8hrs. ### How to use for inference: Instructions to test on CommonVoice extracts are provided in the ASR_Inference.ipynb. Snippet also available below: ``` #!/usr/bin/env python # coding: utf-8 # Loading dependencies and defining preprocessing functions from transformers import Wav2Vec2ForCTC from transformers import Wav2Vec2Processor from datasets import load_dataset, load_metric import re import torchaudio import librosa import numpy as np from datasets import load_dataset, load_metric import torch chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' def remove_special_characters(batch): batch["text"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = speech_array[0].numpy() batch["sampling_rate"] = sampling_rate batch["target_text"] = batch["text"] return batch def resample(batch): batch["speech"] = librosa.resample(np.asarray(batch["speech"]), 48_000, 16_000) batch["sampling_rate"] = 16_000 return batch def prepare_dataset(batch): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"])) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values with processor.as_target_processor(): batch["labels"] = processor(batch["target_text"]).input_ids return batch # Loading model and dataset processor model = Wav2Vec2ForCTC.from_pretrained("wav2vec2-large-xlsr-greek/checkpoint-9200/").to("cuda") processor = Wav2Vec2Processor.from_pretrained("wav2vec2-large-xlsr-greek/") # Preparing speech dataset to be suitable for inference common_voice_test = load_dataset("common_voice", "el", data_dir="cv-corpus-6.1-2020-12-11", split="test") common_voice_test = common_voice_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"]) common_voice_test = common_voice_test.map(remove_special_characters, remove_columns=["sentence"]) common_voice_test = common_voice_test.map(speech_file_to_array_fn, remove_columns=common_voice_test.column_names) common_voice_test = common_voice_test.map(resample, num_proc=8) common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names, batch_size=8, num_proc=8, batched=True) # Loading test dataset common_voice_test_transcription = load_dataset("common_voice", "el", data_dir="./cv-corpus-6.1-2020-12-11", split="test") #Performing inference on a random sample. Change the "example" value to try inference on different CommonVoice extracts example = 123 input_dict = processor(common_voice_test["input_values"][example], return_tensors="pt", sampling_rate=16_000, padding=True) logits = model(input_dict.input_values.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) print("Prediction:") print(processor.decode(pred_ids[0])) # πού θέλεις να πάμε ρώτησε φοβισμένα ο βασιλιάς print("\nReference:") print(common_voice_test_transcription["sentence"][example].lower()) # πού θέλεις να πάμε; ρώτησε φοβισμένα ο βασιλιάς. ``` ### How to use for training: Instructions and code to replicate the process are provided in the Fine_Tune_XLSR_Wav2Vec2_on_Greek_ASR_with_🤗_Transformers.ipynb notebook. ## Metrics | Metric | Value | | ----------- | ----------- | | Training Loss | 0.0287 | | Validation Loss | 0.6162 | | WER | 0.4287 | Full metrics log here: ### Acknowledgment Based on the tutorial of Patrick von Platen: https://huggingface.co/blog/fine-tune-xlsr-wav2vec2 Original colab notebook here: https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers.ipynb#scrollTo=V7YOT2mnUiea