--- language: - multilingual - en - ko - ar - bg - de - el - es - fr - hi - ru - sw - th - tr - ur - vi - zh tags: - deberta - deberta-v3 - mdeberta license: mit --- > ๐Ÿ’ก ์•„๋ž˜ ํ”„๋กœ์ ํŠธ๋Š”ย KPMG Lighthouse Korea์—์„œ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. > KPMG Lighthouse Korea์—์„œ๋Š”, Financial area์˜ ๋‹ค์–‘ํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Edge Technology์˜ NLP/Vision AI๋ฅผ ๋ชจ๋ธ๋งํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. # mDeBERTa-v3-base-kor-further ## What is DeBERTa? - [DeBERTa](https://arxiv.org/abs/2006.03654)๋Š” `Disentangled Attention` + `Enhanced Mask Decoder` ๋ฅผ ์ ์šฉํ•˜์—ฌ ๋‹จ์–ด์˜ positional information์„ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ์•„์ด๋””์–ด๋ฅผ ํ†ตํ•ด, ๊ธฐ์กด์˜ BERT, RoBERTa์—์„œ ์‚ฌ์šฉํ–ˆ๋˜ absolute position embedding๊ณผ๋Š” ๋‹ฌ๋ฆฌ DeBERTa๋Š” ๋‹จ์–ด์˜ ์ƒ๋Œ€์ ์ธ ์œ„์น˜ ์ •๋ณด๋ฅผ ํ•™์Šต ๊ฐ€๋Šฅํ•œ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„ํ•˜์—ฌ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, BERT, RoBERTA ์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ ๋” ์ค€์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. - [DeBERTa-v3](https://arxiv.org/abs/2111.09543)์—์„œ๋Š”, ์ด์ „ ๋ฒ„์ „์—์„œ ์‚ฌ์šฉํ–ˆ๋˜ MLM (Masked Language Model) ์„ RTD (Replaced Token Detection) Task ๋กœ ๋Œ€์ฒดํ•œ ELECTRA ์Šคํƒ€์ผ์˜ ์‚ฌ์ „ํ•™์Šต ๋ฐฉ๋ฒ•๊ณผ, Gradient-Disentangled Embedding Sharing ์„ ์ ์šฉํ•˜์—ฌ ๋ชจ๋ธ ํ•™์Šต์˜ ํšจ์œจ์„ฑ์„ ๊ฐœ์„ ํ•˜์˜€์Šต๋‹ˆ๋‹ค. - DeBERTa์˜ ์•„ํ‚คํ…์ฒ˜๋กœ ํ’๋ถ€ํ•œ ํ•œ๊ตญ์–ด ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด์„œ, `mDeBERTa-v3-base-kor-further` ๋Š” microsoft ๊ฐ€ ๋ฐœํ‘œํ•œ `mDeBERTa-v3-base` ๋ฅผ ์•ฝ 40GB์˜ ํ•œ๊ตญ์–ด ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ **์ถ”๊ฐ€์ ์ธ ์‚ฌ์ „ํ•™์Šต**์„ ์ง„ํ–‰ํ•œ ์–ธ์–ด ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ## How to Use - Requirements ``` pip install transformers pip install sentencepiece ``` - Huggingface Hub ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("lighthouse/mdeberta-v3-base-kor-further") # DebertaV2ForModel tokenizer = AutoTokenizer.from_pretrained("lighthouse/mdeberta-v3-base-kor-further") # DebertaV2Tokenizer (SentencePiece) ``` ## Pre-trained Models - ๋ชจ๋ธ์˜ ์•„ํ‚คํ…์ฒ˜๋Š” ๊ธฐ์กด microsoft์—์„œ ๋ฐœํ‘œํ•œ `mdeberta-v3-base`์™€ ๋™์ผํ•œ ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค. | | Vocabulary(K) | Backbone Parameters(M) | Hidden Size | Layers | Note | | --- | --- | --- | --- | --- | --- | | mdeberta-v3-base-kor-further (mdeberta-v3-base์™€ ๋™์ผ) | 250 | 86 | 768 | 12 | 250K new SPM vocab | ## Further Pretraing Details (MLM Task) - `mDeBERTa-v3-base-kor-further` ๋Š” `microsoft/mDeBERTa-v3-base` ๋ฅผ ์•ฝ 40GB์˜ ํ•œ๊ตญ์–ด ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ MLM Task๋ฅผ ์ ์šฉํ•˜์—ฌ ์ถ”๊ฐ€์ ์ธ ์‚ฌ์ „ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. | | Max length | Learning Rate | Batch Size | Train Steps | Warm-up Steps | | --- | --- | --- | --- | --- | --- | | mdeberta-v3-base-kor-further | 512 | 2e-5 | 8 | 5M | 50k | ## Datasets - ๋ชจ๋‘์˜ ๋ง๋ญ‰์น˜(์‹ ๋ฌธ, ๊ตฌ์–ด, ๋ฌธ์–ด), ํ•œ๊ตญ์–ด Wiki, ๊ตญ๋ฏผ์ฒญ์› ๋“ฑ ์•ฝ 40 GB ์˜ ํ•œ๊ตญ์–ด ๋ฐ์ดํ„ฐ์…‹์ด ์ถ”๊ฐ€์ ์ธ ์‚ฌ์ „ํ•™์Šต์— ์‚ฌ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. - Train: 10M lines, 5B tokens - Valid: 2M lines, 1B tokens - cf) ๊ธฐ์กด mDeBERTa-v3์€ XLM-R ๊ณผ ๊ฐ™์ด [cc-100 ๋ฐ์ดํ„ฐ์…‹](https://data.statmt.org/cc-100/)์œผ๋กœ ํ•™์Šต๋˜์—ˆ์œผ๋ฉฐ, ๊ทธ ์ค‘ ํ•œ๊ตญ์–ด ๋ฐ์ดํ„ฐ์…‹์˜ ํฌ๊ธฐ๋Š” 54GB์ž…๋‹ˆ๋‹ค. ## Fine-tuning on NLU Tasks - Base Model | Model | Size | NSMC(acc) | Naver NER(F1) | PAWS (acc) | KorNLI (acc) | KorSTS (spearman) | Question Pair (acc) | KorQuaD (Dev) (EM/F1) | Korean-Hate-Speech (Dev) (F1) | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | XLM-Roberta-Base | 1.03G | 89.03 | 86.65 | 82.80 | 80.23 | 78.45 | 93.80 | 64.70 / 88.94 | 64.06 | | mdeberta-base | 534M | 90.01 | 87.43 | 85.55 | 80.41 | **82.65** | 94.06 | 65.48 / 89.74 | 62.91 | | mdeberta-base-kor-further (Ours) | 534M | **90.52** | **87.87** | **85.85** | **80.65** | 81.90 | **94.98** | **66.07 / 90.35** | **68.16** | ##KPMG Lighthouse Korea Financial area์˜ ๋‹ค์–‘ํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐ ํ•˜๊ธฐ ์œ„ํ•ด Edge Technology์˜ NLP/Vision AI๋ฅผ ๋ชจ๋ธ๋ง ํ•ฉ๋‹ˆ๋‹ค. ## Citation ``` @misc{he2021debertav3, title={DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing}, author={Pengcheng He and Jianfeng Gao and Weizhu Chen}, year={2021}, eprint={2111.09543}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ``` ## Reference - [DeBERTa](https://github.com/microsoft/DeBERTa) - [Huggingface Transformers](https://github.com/huggingface/transformers) - [๋ชจ๋‘์˜ ๋ง๋ญ‰์น˜](https://corpus.korean.go.kr/) - [Korpora: Korean Corpora Archives](https://github.com/ko-nlp/Korpora) - [sooftware/Korean PLM](https://github.com/sooftware/Korean-PLM)