Safetensors
qwen2_vl
vidore
reranker
NohTow commited on
Commit
c109f15
1 Parent(s): 0a0e17c

Better table labels

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -5,7 +5,7 @@ tags:
5
  - reranker
6
  - qwen2_vl
7
  ---
8
- # MonoQwen2-VL-2B-LoRA-Reranker
9
 
10
  ## Model Overview
11
  The **MonoQwen2-VL-v0.1** is a LoRA of the Qwen2-VL-2B model, optimized for reranking (i.e, asserting pointwise image-query relevance) using the [MonoT5](https://arxiv.org/pdf/2101.05667) objective.
@@ -79,7 +79,7 @@ This example demonstrates how to use the model to assess the relevance of an ima
79
 
80
  The model has been evaluated on [ViDoRe Benchmark](https://huggingface.co/spaces/vidore/vidore-leaderboard), by retrieving 10 elements with [MrLight_dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and reranking them. The table below summarizes its `ndcg@5` scores:
81
 
82
- | Dataset | NDCG@5 Before Reranking | NDCG@5 After Reranking |
83
  |---------------------------------------------------|--------------------------|------------------------|
84
  | vidore/arxivqa_test_subsampled | 85.6 | 89.0 |
85
  | vidore/docvqa_test_subsampled | 57.1 | 59.7 |
 
5
  - reranker
6
  - qwen2_vl
7
  ---
8
+ # MonoQwen2-VL-v0.1
9
 
10
  ## Model Overview
11
  The **MonoQwen2-VL-v0.1** is a LoRA of the Qwen2-VL-2B model, optimized for reranking (i.e, asserting pointwise image-query relevance) using the [MonoT5](https://arxiv.org/pdf/2101.05667) objective.
 
79
 
80
  The model has been evaluated on [ViDoRe Benchmark](https://huggingface.co/spaces/vidore/vidore-leaderboard), by retrieving 10 elements with [MrLight_dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and reranking them. The table below summarizes its `ndcg@5` scores:
81
 
82
+ | Dataset | [MrLight_dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) | MonoQwen2-VL-v0.1 reranking |
83
  |---------------------------------------------------|--------------------------|------------------------|
84
  | vidore/arxivqa_test_subsampled | 85.6 | 89.0 |
85
  | vidore/docvqa_test_subsampled | 57.1 | 59.7 |