duyluandethuong commited on
Commit
fe7b17a
1 Parent(s): d940660

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md CHANGED
@@ -9,6 +9,9 @@ tags:
9
  - unsloth
10
  - qwen2
11
  - trl
 
 
 
12
  ---
13
 
14
  # Uploaded model
@@ -20,3 +23,53 @@ tags:
20
  This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  - unsloth
10
  - qwen2
11
  - trl
12
+ datasets:
13
+ - lightontech/tech-viet-translation
14
+ pipeline_tag: text-generation
15
  ---
16
 
17
  # Uploaded model
 
23
  This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
24
 
25
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
26
+
27
+ To use GGUF format for Llama.cpp or running in LM Studio, Jan and other local software, please refer to [lightontech/SeaLightSum3_GGUF](https://huggingface.co/lightontech/SeaLightSum3_GGUF)
28
+
29
+ # How to use
30
+
31
+ Install unsloth
32
+
33
+ This sample use unsloth for colab, you may switch to unsloth only if you want
34
+
35
+ ```
36
+ pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
37
+ ```
38
+
39
+ ```
40
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
41
+
42
+ ### Instruction:
43
+ {}
44
+
45
+ ### Input:
46
+ {}
47
+
48
+ ### Response:
49
+ {}"""
50
+
51
+ if True:
52
+ from unsloth import FastLanguageModel
53
+ model, tokenizer = FastLanguageModel.from_pretrained(
54
+ model_name = "lightontech/SeaLightSum3-Adapter", # YOUR MODEL YOU USED FOR TRAINING
55
+ max_seq_length = max_seq_length,
56
+ dtype = dtype,
57
+ load_in_4bit = load_in_4bit,
58
+ )
59
+ FastLanguageModel.for_inference(model) # Unsloth has 2x faster inference!
60
+
61
+ # alpaca_prompt = You MUST copy from above!
62
+ FastLanguageModel.for_inference(model) # Unsloth has 2x faster inference!
63
+ inputs = tokenizer(
64
+ [
65
+ alpaca_prompt.format(
66
+ "Dịch đoạn văn sau sang tiếng Việt:\nOnce you have trained a model using either the SFTTrainer, PPOTrainer, or DPOTrainer, you will have a fine-tuned model that can be used for text generation. In this section, we’ll walk through the process of loading the fine-tuned model and generating text. If you need to run an inference server with the trained model, you can explore libraries such as text-generation-inference.", # instruction
67
+ "", # input
68
+ "", # output - leave this blank for generation!
69
+ )
70
+ ], return_tensors = "pt").to("cuda")
71
+
72
+ from transformers import TextStreamer
73
+ text_streamer = TextStreamer(tokenizer)
74
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 1000)
75
+ ```