|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Lightpost model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_rope_utils import rope_config_validation |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class LightpostConfig(PretrainedConfig): |
|
r""" |
|
Configuration class for the Lightpost model. This class stores all parameters needed to define the model architecture. |
|
|
|
Inherits from PretrainedConfig to provide standard configuration functionality. See PretrainedConfig docs for details. |
|
|
|
Args: |
|
vocab_size (int, optional, defaults to 151936): |
|
Size of model vocabulary. Determines number of unique tokens model can process. |
|
|
|
hidden_size (int, optional, defaults to 4096): |
|
Dimension of model's hidden states. |
|
|
|
intermediate_size (int, optional, defaults to 22016): |
|
Dimension of feed-forward network layers. |
|
|
|
num_hidden_layers (int, optional, defaults to 32): |
|
Number of transformer layers in model. |
|
|
|
num_attention_heads (int, optional, defaults to 32): |
|
Number of attention heads per layer. |
|
|
|
num_key_value_heads (int, optional, defaults to 32): |
|
Number of key/value heads for Grouped Query Attention (GQA). |
|
- If equal to num_attention_heads: Uses Multi-Head Attention (MHA) |
|
- If equal to 1: Uses Multi-Query Attention (MQA) |
|
- Otherwise: Uses GQA with specified number of groups |
|
|
|
hidden_act (str or callable, optional, defaults to "silu"): |
|
Activation function used in feed-forward layers. |
|
|
|
max_position_embeddings (int, optional, defaults to 32768): |
|
Maximum sequence length model can handle. |
|
|
|
initializer_range (float, optional, defaults to 0.02): |
|
Standard deviation for weight initialization. |
|
|
|
rms_norm_eps (float, optional, defaults to 1e-06): |
|
Epsilon for RMSNorm layers. |
|
|
|
use_cache (bool, optional, defaults to True): |
|
Whether to use key/value cache for faster inference. |
|
|
|
tie_word_embeddings (bool, optional, defaults to False): |
|
Whether to tie input and output embeddings. |
|
|
|
rope_theta (float, optional, defaults to 10000.0): |
|
Base frequency for rotary position embeddings. |
|
|
|
rope_scaling (dict, optional): |
|
Configuration for RoPE scaling. Supported types: |
|
- default: Original RoPE |
|
- linear: Linear scaling |
|
- dynamic: Dynamic scaling |
|
- yarn: YaRN scaling |
|
- longrope: LongRoPE scaling |
|
- llama3: Llama 3 style scaling |
|
|
|
See implementation docs for type-specific parameters. |
|
|
|
use_sliding_window (bool, optional, defaults to False): |
|
Whether to use sliding window attention. |
|
|
|
sliding_window (int, optional, defaults to 4096): |
|
Size of sliding attention window. |
|
|
|
max_window_layers (int, optional, defaults to 28): |
|
Number of bottom layers using sliding window attention. |
|
|
|
attention_dropout (float, optional, defaults to 0.0): |
|
Dropout probability for attention weights. |
|
|
|
mem_size (int, optional, defaults to 32): |
|
Size of the learnable memory. |
|
|
|
mem_layers (int or list[int], optional, defaults to None): |
|
Layers to apply memory attention to. |
|
|
|
Example: |
|
>>> from transformers import LightpostModel, LightpostConfig |
|
>>> config = LightpostConfig() # Initialize with defaults |
|
>>> model = LightpostModel(config) # Create model |
|
>>> model.config # Access configuration |
|
""" |
|
|
|
model_type = "lightpost" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=151936, |
|
hidden_size=4096, |
|
intermediate_size=22016, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=32, |
|
hidden_act="silu", |
|
max_position_embeddings=32768, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
use_sliding_window=False, |
|
sliding_window=4096, |
|
max_window_layers=28, |
|
attention_dropout=0.0, |
|
mem_size=32, |
|
mem_layers=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.use_sliding_window = use_sliding_window |
|
self.sliding_window = sliding_window if use_sliding_window else None |
|
self.max_window_layers = max_window_layers |
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.attention_dropout = attention_dropout |
|
self.mem_size = mem_size |
|
self.mem_layers = mem_layers |
|
|
|
rope_config_validation(self) |
|
|
|
super().__init__( |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|