File size: 13,751 Bytes
8255e38 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f784df91750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f784df917e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f784df91870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f784df91900>", "_build": "<function ActorCriticPolicy._build at 0x7f784df91990>", "forward": "<function ActorCriticPolicy.forward at 0x7f784df91a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f784df91ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f784df91b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f784df91bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f784df91c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f784df91cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f784df91d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f784df8a740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686582168416371921, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNWVz0n9Hg+jrYTvlDtj75B9HC9aCqMOwAAAAAAAAAAM1ldPcN1RLrsiZ06CYc3NpbEGTsAzbW5AACAPwAAgD8ACo0+2i9lvRChaLlLZ4043bPDvv7soDgAAIA/AACAPwZZDT6fhZe7XgeqOq4xJ7iS/9e8KOPMuQAAgD8AAIA/5p9FvmhiZj/4PX69a+iovjPV8b0pZCO8AAAAAAAAAABmcsa9KGeCPlJaxD1qrIO+KhJNPWNSBT0AAAAAAAAAAJONQD6RA58/CHYfPwBkt76zcYk+speJPgAAAAAAAAAAWhauvu+ocj/ToGM+VYisvlVuAb7CTkA+AAAAAAAAAADapAs+a48UP4Vw6r1KA6C+3DcVPWqAVr0AAAAAAAAAAGbaVb1cpGw7dXmfPZzfar4u8cg8OpE3PQAAAAAAAAAAmqZYvddHuT5SV6Y+fpSRvhEf5z3nkBq9AAAAAAAAAAB68xA+ROGJP8sNgT1g79C+xGIPPlLUHLwAAAAAAAAAAEB2jD1I2Ya6Tb0luZE07bMJzhu7KHtAOAAAgD8AAAAAOgvCPjI4Qz/hlRw+vvL2vma7pz74Nyq+AAAAAAAAAADNVpc80YWUP0rLPz1XY7S+2ZIMPbYD8T0AAAAAAAAAAAB/AL2FQ7y52LuYvPUpjLzMWUu6awb/PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG13QPZqVQiMAWyUTSABjAF0lEdAlG5lzZHuqnV9lChoBkdAbyOjLSuyNWgHTUsBaAhHQJRupweeWfN1fZQoaAZHQHBETUiILw5oB002AWgIR0CUby1yeZogdX2UKGgGR0Bw1pdonKGMaAdNIgFoCEdAlG9FV5rxiHV9lChoBkdAcldL8rI5pGgHTTsBaAhHQJRvTfoA4n51fZQoaAZHQHEc/ykKu0VoB01AAWgIR0CUb1x33YcvdX2UKGgGR0BxsYZEUj9oaAdNIgFoCEdAlG9hu89Oh3V9lChoBkdAb3gkdmxt52gHTS0BaAhHQJRvszCUHIJ1fZQoaAZHQHAKTvE0iyJoB00iAWgIR0CUcMdsBQvYdX2UKGgGR0BtQtsk6cRUaAdNKgFoCEdAlHISmEXcg3V9lChoBkdAcrzn62v0RWgHTQ8BaAhHQJRyj5/LDAJ1fZQoaAZHQHMGnRb8m8doB00oAWgIR0CUcsRDCxeLdX2UKGgGR0BwFVWFN+LFaAdNKwFoCEdAlHVNM9KVZHV9lChoBkdAcdvstTUAk2gHTRUBaAhHQJR2JDhLoOh1fZQoaAZHQG/CUKRdQfpoB00GAWgIR0CUdtCgK4QSdX2UKGgGR0Bxp8vnKW9laAdNNAFoCEdAlHdEFGG21HV9lChoBkdAcazlqrR0EGgHTUYBaAhHQJR3TJzT4L11fZQoaAZHQHEQIJeE7GNoB00sAWgIR0CUd1V+qioLdX2UKGgGR0Bw0Rkrf+CLaAdNEwFoCEdAlHdlpKzzE3V9lChoBkdActf8WKuSwGgHTRgBaAhHQJR3fEpAlfJ1fZQoaAZHQHDo/aHsTnJoB00YAWgIR0CUd+6MBIWhdX2UKGgGR0BxkjmRvFWGaAdNPAFoCEdAlHgB5C4SYnV9lChoBkdAcLXt4zJp4GgHTTIBaAhHQJR4FtfoicJ1fZQoaAZHQHJ5x9w3o9toB00eAWgIR0CUeUJyQxN7dX2UKGgGR0BydCprDZUUaAdNbQFoCEdAlHnKAWi1zHV9lChoBkdAcHB9qUNayWgHTQgBaAhHQJR6ZiUgSvl1fZQoaAZHQG2wFdC3PRloB00pAWgIR0CUetpudf9hdX2UKGgGR0BxKELmZE2HaAdNHwFoCEdAlHs8FEAo5XV9lChoBkdAcP6tI065oWgHTR8BaAhHQJR+z3Dej211fZQoaAZHQHDjYpH7P6doB004AWgIR0CUft5xiobXdX2UKGgGR0BwRVRhttQ9aAdNFQFoCEdAlH/HnuAqeHV9lChoBkdAbbFdZaFEiWgHTRkBaAhHQJR/3s2NvO11fZQoaAZHQHHyror4FidoB00iAWgIR0CUgB1bJOnEdX2UKGgGR0BDyQAuIyj6aAdL8WgIR0CUgQ09hZyNdX2UKGgGR0Bxpk065oXbaAdNKgFoCEdAlIFWQwK0D3V9lChoBkdAb+IpWmxdIGgHTScBaAhHQJSBYmb9ZRt1fZQoaAZHQG2nwFkhA4ZoB01UAWgIR0CUgYTm4iHJdX2UKGgGR0BwKfrGBFuvaAdNSQFoCEdAlIHMEJSiunV9lChoBkdAb+EGATZg5WgHTSQBaAhHQJSDiDTSb6R1fZQoaAZHQHFXAeV9nbtoB02JAWgIR0CUg8Uz9CNTdX2UKGgGR0BUrxrrPdEcaAdNGQFoCEdAlISTYh+vyXV9lChoBkdAb+MB3A2ycGgHTTsBaAhHQJSFWlJpWWB1fZQoaAZHQHIFSrtE5QxoB02jAWgIR0CUhbVwgkkbdX2UKGgGR0BxzW5VfeDWaAdNKwFoCEdAlIXnymQ8wHV9lChoBkdActUXKr7wa2gHS/RoCEdAlIfpRjz7M3V9lChoBkdAcP9VrAP/aWgHTQEBaAhHQJSKCyt3fQ91fZQoaAZHQHBgXG8274BoB00UAWgIR0CUinuDSPU8dX2UKGgGR0Bs/36VMVUNaAdL/mgIR0CUnyvbGm1qdX2UKGgGR0Bx/+bpeNT+aAdNQQFoCEdAlJ89O/L1VnV9lChoBkdAcNpe5WilBWgHTQsBaAhHQJSfqV4X40x1fZQoaAZHQG5LWhAWznloB005AWgIR0CUn9aiKziTdX2UKGgGR0BxFZzeXRgJaAdNGwFoCEdAlJ/xW1c+q3V9lChoBkdAcpxPCl7+k2gHTSQBaAhHQJSgjYvnKW91fZQoaAZHQHMEo593KSxoB00fAWgIR0CUoKTW5H3DdX2UKGgGR0Bxu22/i5uqaAdL9mgIR0CUoONVR1oydX2UKGgGR0Bzh/TYukDZaAdNAQFoCEdAlKFXeizsyHV9lChoBkdAcj+5Pdl/Y2gHTS4BaAhHQJSjHMdLg4x1fZQoaAZHQHCfwuyu6mRoB00eAWgIR0CUo5REWqLkdX2UKGgGR0ByXn63y7PIaAdNQgFoCEdAlKRExIre7HV9lChoBkdAcA+r3j+72GgHTUMBaAhHQJSkkcZLqUx1fZQoaAZHQHCyjKPn0TVoB00zAWgIR0CUpfOmixmkdX2UKGgGR0ByBKu/1xsEaAdNFgFoCEdAlKeZI+W4VnV9lChoBkdAcj0TDfm9x2gHTRYBaAhHQJSocrGza9N1fZQoaAZHQG26YlyBCldoB01EAWgIR0CUqJstCiRGdX2UKGgGR0Bu3HFDOTq0aAdNYQFoCEdAlKlDBVMmGHV9lChoBkdAcdCB6a9bo2gHTSEBaAhHQJSpqkXUH6d1fZQoaAZHQHIRt2cJ+lVoB01PAWgIR0CUqbp9ZzPsdX2UKGgGR0By738tPHktaAdNDAFoCEdAlKnnBciW3XV9lChoBkdAcXz3evZAZGgHTVABaAhHQJSqSyMUAT91fZQoaAZHQHF5pgLJCBxoB00tAWgIR0CUqlk690zTdX2UKGgGR0ByGebMHKOlaAdNWQFoCEdAlKpnGjsUqXV9lChoBkdAb3NU7Sy+pWgHS/xoCEdAlKu27FsHjnV9lChoBkdAcRe42jwhGGgHTUEBaAhHQJStbyWiUPh1fZQoaAZHQG1e/kWAPNFoB00cAWgIR0CUrcxYJVsDdX2UKGgGR0Bvfj2OAAhjaAdNLgFoCEdAlK4QTEit73V9lChoBkdAcJjVTrE9+2gHTRIBaAhHQJSuy9Htnf51fZQoaAZHQHErVP8AJcBoB0v8aAhHQJSwW14Pf9B1fZQoaAZHQG2kwC0WuYBoB00aAWgIR0CUsKcMVk+YdX2UKGgGR0BskcEPlMh6aAdNFQFoCEdAlLIewgTyrnV9lChoBkdAcVsQ0GeMAGgHTQoBaAhHQJSyaaScLBt1fZQoaAZHQHGwEKArhBJoB01HAWgIR0CUs0Djin50dX2UKGgGR0BwuzSDyvs7aAdNFwFoCEdAlLNwNG3F1nV9lChoBkdAcuxfNA1NxmgHTTABaAhHQJSzmSeRPoF1fZQoaAZHQG4mvPkaMrFoB00tAWgIR0CUtCEbo8p1dX2UKGgGR0Bx/xrFfiPyaAdNawJoCEdAlLRV6zE74nV9lChoBkdAcWl6Ae7tiWgHS/1oCEdAlLZtO/L1VnV9lChoBkdAbMz1Gsmv4mgHTQgBaAhHQJS2cAT7EYR1fZQoaAZHQHETgzUI9kloB01IAWgIR0CUts1dPci4dX2UKGgGR0By8ogDA8B/aAdNNwFoCEdAlLiyncclxHV9lChoBkdAbYi7YkE9uGgHTS0BaAhHQJS5OBreqJd1fZQoaAZHQHFZI02tMf1oB00NAWgIR0CUugtlqagFdX2UKGgGR0BxJykIomXxaAdNFgFoCEdAlLoTwpe/pXV9lChoBkdAca4UQTVUdmgHTQcBaAhHQJS7dzRx95R1fZQoaAZHQHB+nUlRgqpoB00pAWgIR0CUvIIUahpQdX2UKGgGR0BwZrNcGC7LaAdNGAFoCEdAlL121x82JnV9lChoBkdAboVW4mTkhmgHTQcBaAhHQJS9ns5XEIh1fZQoaAZHQG9ZWtlqagFoB00WAWgIR0CUvfQTVUdadX2UKGgGR0BwLdlVcUudaAdNLgFoCEdAlL4aMaS9unV9lChoBkdAccQTWGyooGgHS/9oCEdAlL/+Gj9GZ3V9lChoBkdAcOTqIacZtWgHS/5oCEdAlL/5eE7GN3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |