lijialudew
commited on
Commit
•
bc98ab0
1
Parent(s):
449ceda
Upload fairseq_wav2vec.py
Browse files- fairseq_wav2vec.py +294 -0
fairseq_wav2vec.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This snippet is adapted from the original SpeechBrain codebase.
|
3 |
+
This lobe enables the integration of fairseq pretrained wav2vec models.
|
4 |
+
|
5 |
+
Reference: https://arxiv.org/abs/2006.11477
|
6 |
+
Reference: https://arxiv.org/abs/1904.05862
|
7 |
+
FairSeq >= 1.0.0 needs to be installed: https://fairseq.readthedocs.io/en/latest/
|
8 |
+
|
9 |
+
Original Authors
|
10 |
+
* Titouan Parcollet 2021
|
11 |
+
* Salima Mdhaffar 2021
|
12 |
+
|
13 |
+
Modified by
|
14 |
+
* Jialu Li 2023
|
15 |
+
"""
|
16 |
+
|
17 |
+
import logging
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from torch import nn
|
21 |
+
from speechbrain.utils.data_utils import download_file
|
22 |
+
|
23 |
+
# We check if fairseq is installed.
|
24 |
+
try:
|
25 |
+
import fairseq
|
26 |
+
except ImportError:
|
27 |
+
MSG = "Please install Fairseq to use pretrained wav2vec\n"
|
28 |
+
MSG += "E.G. run: pip install fairseq"
|
29 |
+
raise ImportError(MSG)
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class FairseqWav2Vec2(nn.Module):
|
34 |
+
"""This lobe enables the integration of fairseq pretrained wav2vec2.0 models.
|
35 |
+
|
36 |
+
Source paper: https://arxiv.org/abs/2006.11477
|
37 |
+
FairSeq >= 1.0.0 needs to be installed:
|
38 |
+
https://fairseq.readthedocs.io/en/latest/
|
39 |
+
|
40 |
+
The model can be used as a fixed features extractor or can be finetuned. It
|
41 |
+
will download automatically the model if a url is given (e.g FairSeq
|
42 |
+
repository from GitHub).
|
43 |
+
|
44 |
+
Arguments
|
45 |
+
---------
|
46 |
+
save_path : str
|
47 |
+
Path and filename of the downloaded model.
|
48 |
+
input_norm : bool (default: None)
|
49 |
+
If True, a layer_norm (affine) will be applied to the input waveform.
|
50 |
+
By default, it is extracted from the checkpoint of the downloaded model
|
51 |
+
in order to match the pretraining conditions. However, if this information
|
52 |
+
is not given in the checkpoint, it has to be given manually.
|
53 |
+
output_norm : bool (default: True)
|
54 |
+
If True, a layer_norm (affine) will be applied to the output obtained
|
55 |
+
from the wav2vec model.
|
56 |
+
freeze : bool (default: True)
|
57 |
+
If True, the model is frozen. If False, the model will be trained
|
58 |
+
alongside with the rest of the pipeline.
|
59 |
+
pretrain : bool (default: True)
|
60 |
+
If True, the model is pretrained with the specified source.
|
61 |
+
If False, the randomly-initialized model is instantiated.
|
62 |
+
dropout : float (default: None)
|
63 |
+
If different from None (0.0 to 1.0), it will override the given fairseq
|
64 |
+
dropout rates. This is useful if the wav2vec2 model has been trained
|
65 |
+
without dropout and one wants to reactivate it for downstream task
|
66 |
+
fine-tuning (better performance observed).
|
67 |
+
encoder_dropout : float (default: None)
|
68 |
+
If different from None (0.0 to 1.0), it will override the given fairseq
|
69 |
+
encoder_layerdrop rates. It has certain probability to dropout random number
|
70 |
+
of layer features.
|
71 |
+
output_all_hiddens: bool (default: False)
|
72 |
+
If True, output the features from all 12 transformer layers.
|
73 |
+
If False, output the features from only the last transformer layer.
|
74 |
+
tgt_layer: int or list of int (default: None)
|
75 |
+
If not None, output the features of the front-end CNN or specified transformer layer(s).
|
76 |
+
(0-indexed. 0 - CNN front-end layer, 1-12 transformer layers).
|
77 |
+
For extracting front-end CNN features, specify it as "CNN".
|
78 |
+
For single layer, specify it as an int.
|
79 |
+
For multiple layers, specify it as a list of int.
|
80 |
+
include_CNN_layer: bool (default: False)
|
81 |
+
This should be used when output_all_hiddens==True.
|
82 |
+
If True, output the features from front-end CNN layer as well as all 12 transformer layers.
|
83 |
+
"""
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
save_path,
|
88 |
+
input_norm=None,
|
89 |
+
output_norm=True,
|
90 |
+
freeze=True,
|
91 |
+
pretrain=True,
|
92 |
+
dropout=None,
|
93 |
+
encoder_dropout = None,
|
94 |
+
output_all_hiddens = True,
|
95 |
+
tgt_layer = None,
|
96 |
+
include_CNN_layer = False,
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
# During pretraining dropout might be set to 0. However, we might want
|
101 |
+
# to apply dropout when fine-tuning on a downstream task. Hence we need
|
102 |
+
# to modify the fairseq cfg to activate dropout (if requested).
|
103 |
+
overrides={}
|
104 |
+
if encoder_dropout is not None:
|
105 |
+
overrides = {
|
106 |
+
"model": {
|
107 |
+
"encoder_layerdrop": encoder_dropout,
|
108 |
+
}
|
109 |
+
}
|
110 |
+
if not freeze:
|
111 |
+
if dropout is not None and encoder_dropout is not None:
|
112 |
+
overrides = {
|
113 |
+
"model": {
|
114 |
+
"dropout": dropout,
|
115 |
+
"encoder_layerdrop": encoder_dropout,
|
116 |
+
"dropout_input": dropout,
|
117 |
+
"attention_dropout": dropout,
|
118 |
+
}
|
119 |
+
}
|
120 |
+
elif dropout is not None:
|
121 |
+
overrides = {
|
122 |
+
"model": {
|
123 |
+
"dropout": dropout,
|
124 |
+
"dropout_input": dropout,
|
125 |
+
"attention_dropout": dropout,
|
126 |
+
}
|
127 |
+
}
|
128 |
+
(
|
129 |
+
model,
|
130 |
+
cfg,
|
131 |
+
task,
|
132 |
+
) = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
133 |
+
[save_path], arg_overrides=overrides
|
134 |
+
)
|
135 |
+
|
136 |
+
# wav2vec pretrained models may need the input waveform to be normalized
|
137 |
+
# Hence, we check if the model has be trained with or without it.
|
138 |
+
# If the information isn't contained in the checkpoint IT HAS TO BE GIVEN
|
139 |
+
# BY THE USER.
|
140 |
+
if input_norm is None:
|
141 |
+
if hasattr(cfg["task"], "normalize"):
|
142 |
+
self.normalize = cfg["task"].normalize
|
143 |
+
elif hasattr(cfg, "normalize"):
|
144 |
+
self.normalize = cfg.normalize
|
145 |
+
else:
|
146 |
+
self.normalize = False
|
147 |
+
else:
|
148 |
+
self.normalize = input_norm
|
149 |
+
|
150 |
+
model = model[0]
|
151 |
+
self.model = model
|
152 |
+
self.freeze = freeze
|
153 |
+
self.output_norm = output_norm
|
154 |
+
|
155 |
+
if self.freeze:
|
156 |
+
self.model.eval()
|
157 |
+
# Freeze parameters
|
158 |
+
for param in model.parameters():
|
159 |
+
param.requires_grad = False
|
160 |
+
else:
|
161 |
+
self.model.train()
|
162 |
+
for param in model.parameters():
|
163 |
+
param.requires_grad = True
|
164 |
+
|
165 |
+
# Randomly initialized layers if pretrain is False
|
166 |
+
if not (pretrain):
|
167 |
+
self.reset_layer(self.model)
|
168 |
+
|
169 |
+
# Following the fairseq implementation of downstream training,
|
170 |
+
# we remove some modules that are unnecessary.
|
171 |
+
self.remove_pretraining_modules()
|
172 |
+
self.output_all_hiddens = output_all_hiddens
|
173 |
+
self.tgt_layer = tgt_layer
|
174 |
+
self.include_CNN_layer=include_CNN_layer
|
175 |
+
if not self.output_all_hiddens:
|
176 |
+
logger.info(
|
177 |
+
f"include_CNN_layer is not used when output_all_hidden is False"
|
178 |
+
)
|
179 |
+
if self.output_all_hiddens:
|
180 |
+
self.tgt_layer==None
|
181 |
+
logger.warning(
|
182 |
+
f"Set tgt_layer to None when output_all_hiddens is True"
|
183 |
+
)
|
184 |
+
|
185 |
+
def forward(self, wav):
|
186 |
+
"""Takes an input waveform of shape (Batch, Time) and return its corresponding wav2vec encoding.
|
187 |
+
|
188 |
+
Arguments
|
189 |
+
---------
|
190 |
+
wav : torch.Tensor (signal)
|
191 |
+
A batch of audio signals to transform to features.
|
192 |
+
"""
|
193 |
+
|
194 |
+
# If we freeze, we simply remove all grads and features from the graph.
|
195 |
+
if self.freeze:
|
196 |
+
with torch.no_grad():
|
197 |
+
return self.extract_features(wav).detach()
|
198 |
+
|
199 |
+
return self.extract_features(wav)
|
200 |
+
|
201 |
+
def extract_features(self, wav):
|
202 |
+
"""Extracts the wav2vect embeddings
|
203 |
+
wav: torch tensor
|
204 |
+
Retruning output dimension as # of Layers x Batch x Time x Dimension
|
205 |
+
"""
|
206 |
+
# We normalize the input signal if needed.
|
207 |
+
if self.normalize:
|
208 |
+
wav = F.layer_norm(wav, wav.shape)
|
209 |
+
|
210 |
+
out = self.model.extract_features(wav, padding_mask=None, mask=False)
|
211 |
+
# Extract wav2vec output
|
212 |
+
if isinstance(self.tgt_layer, int):
|
213 |
+
features = out['layer_results'][self.tgt_layer][0].transpose(0, 1)
|
214 |
+
elif isinstance(self.tgt_layer, list):
|
215 |
+
features = []
|
216 |
+
for i in self.tgt_layer:
|
217 |
+
curr_feature = out['layer_results'][i][0].transpose(0, 1)
|
218 |
+
features.append(curr_feature)
|
219 |
+
features = torch.stack(features)
|
220 |
+
elif self.output_all_hiddens:
|
221 |
+
features = self.aggregate_features(out, include_CNN_layer=self.include_CNN_layer) # 13, B, T, D
|
222 |
+
else: # output last layer only
|
223 |
+
features = out['x']
|
224 |
+
|
225 |
+
out=features
|
226 |
+
# We normalize the output if required
|
227 |
+
if self.output_norm:
|
228 |
+
out = F.layer_norm(out, out.shape)
|
229 |
+
|
230 |
+
return out
|
231 |
+
|
232 |
+
def aggregate_features(self, out, include_CNN_layer=True):
|
233 |
+
features = []
|
234 |
+
self.model.layerdrop = 0
|
235 |
+
for i in range(len(out['layer_results'])):
|
236 |
+
curr_feature = out['layer_results'][i][0].transpose(0,1)
|
237 |
+
features.append(curr_feature)
|
238 |
+
features = torch.stack(features)
|
239 |
+
if not include_CNN_layer:
|
240 |
+
features=features[1:]
|
241 |
+
return features
|
242 |
+
|
243 |
+
def reset_layer(self, model):
|
244 |
+
"""Reinitializes the parameters of the network"""
|
245 |
+
if hasattr(model, "reset_parameters"):
|
246 |
+
model.reset_parameters()
|
247 |
+
for child_layer in model.children():
|
248 |
+
if model != child_layer:
|
249 |
+
self.reset_layer(child_layer)
|
250 |
+
|
251 |
+
def _load_sb_pretrained_w2v2_parameters(self, path):
|
252 |
+
"""Loads the parameter of a w2v2 model pretrained with SpeechBrain and the
|
253 |
+
HuggingFaceWav2Vec2Pretrain Object. It is necessary to perform a custom
|
254 |
+
loading because HuggingFace adds a level to the checkpoint when storing
|
255 |
+
the model breaking the compatibility between HuggingFaceWav2Vec2Pretrain
|
256 |
+
and HuggingFaceWav2Vec2.
|
257 |
+
|
258 |
+
In practice a typical HuggingFaceWav2Vec2 checkpoint for a given parameter
|
259 |
+
would be: model.conv.weight.data while for HuggingFaceWav2Vec2Pretrain it
|
260 |
+
is: model.wav2vec2.weight.data (wav2vec2 must be removed before loading).
|
261 |
+
"""
|
262 |
+
modified_state_dict = {}
|
263 |
+
orig_state_dict = torch.load(path, map_location="cpu")
|
264 |
+
|
265 |
+
# We remove the .wav2vec2 in the state dict.
|
266 |
+
for key, params in orig_state_dict.items():
|
267 |
+
if "model." in key:
|
268 |
+
save_key = key.replace("model.", "")
|
269 |
+
modified_state_dict[save_key] = params
|
270 |
+
|
271 |
+
incompatible_keys = self.model.load_state_dict(
|
272 |
+
modified_state_dict, strict=False
|
273 |
+
)
|
274 |
+
|
275 |
+
for missing_key in incompatible_keys.missing_keys:
|
276 |
+
logger.warning(
|
277 |
+
f"During parameter transfer to {self.model} loading from "
|
278 |
+
+ f"{path}, the transferred parameters did not have "
|
279 |
+
+ f"parameters for the key: {missing_key}"
|
280 |
+
)
|
281 |
+
|
282 |
+
for unexpected_key in incompatible_keys.unexpected_keys:
|
283 |
+
logger.warning(
|
284 |
+
f"The param with the key: {unexpected_key} is discarded as it "
|
285 |
+
+ "is useless for wav2vec 2.0 finetuning."
|
286 |
+
)
|
287 |
+
|
288 |
+
def remove_pretraining_modules(self):
|
289 |
+
""" Remove uneeded modules. Inspired by the same fairseq function."""
|
290 |
+
|
291 |
+
self.model.quantizer = None
|
292 |
+
self.model.project_q = None
|
293 |
+
self.model.target_glu = None
|
294 |
+
self.model.final_proj = None
|