--- license: apache-2.0 base_model: google/bert_uncased_L-2_H-128_A-2 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: tiny-bert-sst2-distilled results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8038990825688074 --- # tiny-bert-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.2916 - Accuracy: 0.8039 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.478952479475704e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8025 | 1.0 | 527 | 1.3940 | 0.7901 | | 1.1308 | 2.0 | 1054 | 1.2916 | 0.8039 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1