File size: 17,032 Bytes
071945c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
# coding=utf-8
# Copyright 2024 LY Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import logging
from typing import Optional, Union
import timm
import torch
import torch.distributed as dist
import torch.distributed.nn
import torch.nn as nn
import torch.nn.functional as F
from timm.models.swin_transformer import SwinTransformer as TimmSwinTransformer
from transformers import PreTrainedModel
from transformers.utils.logging import get_logger
from .configuration_clyp import (
CLYPTextBackboneConfig,
CLYPTextEncoderConfig,
CLYPVisionBackboneConfig,
CLYPVisionEncoderConfig,
)
from .model_rinna import RinnaCLIPConfig, RinnaCLIPModel
DEFAULT_LOGGER = get_logger(__name__)
class VisionEncoder(nn.Module):
"""Vision encoder to extract image feateurs.
Pooler and neck are optional.
Instead of defining pooler and neck in VisionEncoder, you can define them in algorithm classes.
Attributes:
backbone (nn.Module): backbone loaded from timm, huggingface or registry.
pooler (nn.Module): module to extract image-level features.
neck (nn.Module): module to adjust feature dimensions.
"""
def __init__(
self,
backbone: nn.Module,
pooler: Optional[nn.Module] = None,
neck: Optional[nn.Module] = None,
) -> None:
super().__init__()
self.backbone = backbone
self.pooler = pooler
self.neck = neck
def forward(self, imgs: torch.Tensor):
"""A method to extract image features.
Args:
imgs (torch.Tensor): shape=(batch_size, channels, height, width).
Returns:
out (torch.Tensor): the output shape changes depending on pooler, and the following shapes are usually expected.
- output only image-level features like CLIP: shape=(batch_size, embed_dim)
- output image-level and local patch features like BLIP2: shape=(batch_size, embed_dim, length)
"""
out = self.backbone(imgs) # Shape=(batch_size, channels, height, width)
if self.pooler:
out = self.pooler(out)
if self.neck:
out = self.neck(out)
return out
class SwinTransformerPerm(nn.Module):
"""Wrapper for SwinTransformer in timm.
This wrapper changes the output shape to (batch_size, channels, height, width).
The original shape of timm SwinTransformer is (batch_size, height, width, channels).
"""
def __init__(self, swin: nn.Module) -> None:
super().__init__()
self.swin = swin
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.swin(x)
out = out.permute(0, 3, 1, 2)
return out
def load_from_timm(
config: CLYPVisionBackboneConfig,
use_gradient_checkpointing: bool = False,
path_weights: Optional[str] = None,
logger: logging.Logger = DEFAULT_LOGGER,
):
"""Create a backbone using a method: timm.create_model.
Args:
config (TimmBackboneConfig): config fed to timm.create_model.
use_gradient_checkpointing (bool): True if use gradient checkpointing.
path_weights (str): path to weights for backbone initialization.
"""
# backbone
assert config is not None
backbone = timm.create_model(
model_name=config.model_name,
pretrained=config.pretrained,
**config.extra_kwargs,
)
backbone.reset_classifier(0, "")
logger.info(
f" - load from timm: model_name={config.model_name}, pretrained={config.pretrained}"
)
# gradient checkpointing
backbone.set_grad_checkpointing(enable=use_gradient_checkpointing)
if use_gradient_checkpointing:
logger.info(" - gradient checkpointing is enebled.")
# init weights
if path_weights:
state_dict = torch.load(path_weights, map_location="cpu")
checks = backbone.load_state_dict(state_dict, strict=False)
logger.info(f" - load weights from {path_weights}")
logger.info(f" - state dict checks: {checks}")
# swin
if isinstance(backbone, TimmSwinTransformer):
backbone = SwinTransformerPerm(backbone)
return backbone
def create_vision_encoder(
config: CLYPVisionEncoderConfig, logger: logging.Logger = DEFAULT_LOGGER
) -> VisionEncoder:
assert config.pooler_config.input_type
backbone = load_from_timm(config.backbone_config, logger=logger)
pooler = CLSTokenPooling(
config.pooler_config.input_type, config.pooler_config.return_patch_features
)
neck = Linear(
config.neck_config.in_channels,
config.neck_config.out_channels,
config.neck_config.bias,
)
return VisionEncoder(backbone, pooler=pooler, neck=neck)
class TextEncoder(nn.Module):
"""Text encoder to extract text features.
Pooler and neck are optional.
Instead of defining pooler and neck in TextEncoder, you can define them in algorithm classes.
Attributes:
backbone (nn.Module): backbone loaded from timm, huggingface or registry.
pooler (nn.Module): module to extract image-level features.
neck (nn.Module): module to adjust feature dimensions.
"""
def __init__(
self,
backbone: nn.Module,
pooler: Optional[nn.Module] = None,
neck: Optional[nn.Module] = None,
) -> None:
super().__init__()
self.backbone = backbone
self.pooler = pooler
self.neck = neck
def forward(self, inputs: dict) -> torch.Tensor:
"""A method to extract text features.
Args:
inputs (dict): basic keys are shown below:
- input_ids (torch.Tensor)
- attention_mask (Optional[torch.Tensor])
- position_ids (Optional[torch.Tensor])
- token_type_ids (Optional[torch.Tensor])
- output_attentions Optional[bool]
- output_hidden_states Optional[bool]
Returns:
out (torch.Tensor): the output shape changes depending on pooler, and the following shapes are usually expected.
- output only class token like CLIP: shape=(batch_size, embed_dim)
- output all token features like BLIP2: shape=(batch_size, embed_dim, length)
"""
out = self.backbone(**inputs)
if self.pooler:
out = self.pooler(out)
if self.neck:
out = self.neck(out)
return out
class TextBackboneModelWrapper(nn.Module):
def __init__(self, model: nn.Module) -> None:
super().__init__()
self.model = model.text_model
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:
out = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
)
return out
def set_gradient_checkpointing(self, enabled: bool) -> None:
if enabled:
self.model.gradient_checkpointing_enable()
def load_from_huggingface(
config: CLYPTextBackboneConfig,
use_gradient_checkpointing: bool = False,
path_weights: Optional[str] = None,
logger: logging.Logger = DEFAULT_LOGGER,
) -> nn.Module:
"""Load a backbone from huggingface.
Args:
config (HuggingfaceBackboneConfig): config fed to AutoModel.from_pretrained.
use_gradient_checkpointing (bool): True if use gradient checkpointing.
path_weights (str): path to weights for backbone initialization.
"""
# NOTE:
# Initialize Rinna CLIP without pretrained weights here,
# because CLYP model loads its whole weights afterward
auto_config = RinnaCLIPConfig.from_pretrained(config.model_name)
backbone = RinnaCLIPModel(auto_config)
logger.info(f" - load from huggingface: model_name={config.model_name}")
# gradient checkpointing
if isinstance(backbone, PreTrainedModel):
if use_gradient_checkpointing:
backbone.gradient_checkpointing_enable()
logger.info(" - gradient checkpointing is enabled")
else:
raise NotImplementedError()
# init weights
if path_weights:
raise NotImplementedError()
return backbone
def create_text_encoder(
config: CLYPTextEncoderConfig, logger: logging.Logger = DEFAULT_LOGGER
) -> TextEncoder:
assert config.pooler_config.input_type
backbone = TextBackboneModelWrapper(
load_from_huggingface(config.backbone_config, logger=logger)
)
pooler = CLSTokenPooling(
config.pooler_config.input_type, config.pooler_config.return_patch_features
)
neck = Linear(
config.neck_config.in_channels,
config.neck_config.out_channels,
bias=config.neck_config.bias,
)
return TextEncoder(backbone, pooler=pooler, neck=neck)
class Linear(nn.Module):
"""Linear layer."""
def __init__(self, in_channels: int, out_channels: int, bias: bool) -> None:
"""
Args:
in_channels (int): input feature dimension.
out_channels (out): output feature dimension.
bias (bool): True if use bias in nn.Linear.
"""
super().__init__()
self.linear = nn.Linear(in_channels, out_channels, bias=bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x (torch.Tensor): shape=(batch_size, ..., in_channels).
Returns:
out (torch.Tensor): shape=(batch_size, ..., out_channels).
"""
out = self.linear(x)
return out
class CLSTokenPooling(nn.Module):
"""A module to extract class token."""
def __init__(self, input_type: str, return_patch_features: bool) -> None:
"""
Args:
input_type (str): timm or huggingface.
- If input_type is timm, x[:, 0] is extracted as a class token.
- If input_type is huggingface, x.last_hidden_state[:,0] is extracted as a class token.
return_patch_features (bool): True if output local features.
"""
super().__init__()
assert input_type in ["timm", "huggingface"]
self.input_type = input_type
self.return_patch_features = return_patch_features
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x (torch.Tensor): shape=(batch_size, length, dim).
Returns:
out (torch.Tensor): shape=(batch_size, dim).
"""
# tensor: shape=(batch_size, length, dim)
if self.input_type == "timm":
assert x.ndim == 3, "CLSTokenPooling: dimension of input tensor must be 3."
if self.return_patch_features:
return x
else:
return x[:, 0]
# huggingface
elif self.input_type == "huggingface":
out = x.last_hidden_state
if self.return_patch_features:
return out
else:
return out[:, 0]
class InfoNCELoss(nn.Module):
def __init__(
self,
learn_temperature: bool,
init_temperature: float,
max_temperature: Optional[float] = None,
min_temperature: Optional[float] = None,
label_smoothing: float = 0.0,
gather_with_grad: bool = False,
):
super().__init__()
self.label_smoothing = label_smoothing
self.gather_with_grad = gather_with_grad
# set temperature
self.learn_temperature = learn_temperature
self.temperature = torch.ones([]) * init_temperature
if self.learn_temperature:
self.temperature = nn.Parameter(self.temperature)
self.max_temperature = max_temperature
self.min_temperature = min_temperature
# whether clip temperature or not
self.require_temperature_clipping = self.learn_temperature and (
self.max_temperature or self.min_temperature
)
def clip_temperature(self):
if self.require_temperature_clipping:
self.temperature.data = torch.clamp(
self.temperature, self.min_temperature, self.max_temperature
)
def forward(
self,
image_feats: torch.Tensor,
text_feats: torch.Tensor,
return_similarity: bool = False,
) -> Union[torch.Tensor, tuple[torch.Tensor]]:
# gather image and text features
image_feats_all = concat_all_gather(
image_feats, with_grad=self.gather_with_grad
)
text_feats_all = concat_all_gather(text_feats, with_grad=self.gather_with_grad)
# compute cosine similarity
sim_i2t = image_to_text_similarity(
image_feats=image_feats,
text_feats=text_feats_all,
)
sim_t2i = text_to_image_similarity(
text_feats=text_feats,
image_feats=image_feats_all,
)
# logits, scaled cosine similarity
logits_i2t = sim_i2t / self.temperature
logits_t2i = sim_t2i / self.temperature
# obtain targets
rank = dist.get_rank()
batch_size = image_feats.size(0)
targets = torch.arange(batch_size) + batch_size * rank
targets = targets.to(dtype=torch.long, device=image_feats.device)
# calculate loss
loss_i2t = F.cross_entropy(
logits_i2t, targets, label_smoothing=self.label_smoothing
)
loss_t2i = F.cross_entropy(
logits_t2i, targets, label_smoothing=self.label_smoothing
)
loss = (loss_i2t + loss_t2i) / 2.0
if not return_similarity:
return loss
else:
return loss, sim_i2t, sim_t2i
def image_to_text_similarity(
image_feats: torch.Tensor, text_feats: torch.Tensor
) -> torch.Tensor:
"""
Args:
image_feats (torch.Tensor): shape=(num_imgs, embed_dim) or (num_imgs, num_query_tokens, embed_dim).
text_feats (torch.Tensor): shape=(num_texts, embed_dim).
Returns:
sim_i2t (torch.Tensor): shape=(num_imgs, num_texts).
"""
assert image_feats.ndim in [2, 3]
assert text_feats.ndim == 2
# normalize features
image_feats = F.normalize(image_feats, dim=-1)
text_feats = F.normalize(text_feats, dim=-1)
if image_feats.ndim == 2:
sim_i2t = image_feats @ text_feats.T
else:
# a query token with maximum cosine similarity is selected
sim_i2t = torch.matmul(
image_feats.unsqueeze(1), text_feats.unsqueeze(0).unsqueeze(-1)
).squeeze() # shape=(num_imgs, num_texts, num_query_tokens)
sim_i2t, _ = sim_i2t.max(dim=-1) # shape=(num_imgs, num_texts)
return sim_i2t
def text_to_image_similarity(text_feats: torch.Tensor, image_feats: torch.Tensor):
"""
Args:
text_feats (torch.Tensor): shape=(num_texts, embed_dim).
image_feats (torch.Tensor): shape=(num_imgs, embed_dim) or (num_imgs, num_query_tokens, embed_dim).
Returns:
similarity_maxtrix (torch.Tensor): shape=(num_texts, num_imgs).
"""
assert image_feats.ndim in [2, 3]
assert text_feats.ndim == 2
# normalize features
image_feats = F.normalize(image_feats, dim=-1)
text_feats = F.normalize(text_feats, dim=-1)
if image_feats.ndim == 2:
sim_t2i = text_feats @ image_feats.T
else:
# a query token with maximum cosine similarity is selected
sim_t2i = torch.matmul(
text_feats.unsqueeze(1).unsqueeze(1),
image_feats.permute(0, 2, 1).unsqueeze(0),
).squeeze()
sim_t2i, _ = sim_t2i.max(dim=-1)
return sim_t2i
def concat_all_gather(tensor: torch.Tensor, with_grad: bool):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
Another implementation: https://github.com/salesforce/LAVIS/blob/main/lavis/models/base_model.py#L202-L237
"""
if with_grad:
output = torch.cat(torch.distributed.nn.all_gather(tensor), dim=0)
else:
tensors_gather = [torch.ones_like(tensor) for _ in range(dist.get_world_size())]
dist.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output
|