Upload 2 files
Browse files- QLNet_symmetry.ipynb +540 -594
- qlnet.py +4 -4
QLNet_symmetry.ipynb
CHANGED
@@ -1,605 +1,551 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
},
|
41 |
-
"id": "7vDt28zlzi0r",
|
42 |
-
"execution_count": 5,
|
43 |
-
"outputs": []
|
44 |
-
},
|
45 |
-
{
|
46 |
-
"cell_type": "code",
|
47 |
-
"execution_count": 9,
|
48 |
-
"id": "3f703be8",
|
49 |
-
"metadata": {
|
50 |
-
"colab": {
|
51 |
-
"base_uri": "https://localhost:8080/"
|
52 |
-
},
|
53 |
-
"id": "3f703be8",
|
54 |
-
"outputId": "de73c734-305f-4955-fe69-7b7253b4f95e"
|
55 |
-
},
|
56 |
-
"outputs": [
|
57 |
-
{
|
58 |
-
"output_type": "stream",
|
59 |
-
"name": "stdout",
|
60 |
-
"text": [
|
61 |
-
"Using device: cpu\n"
|
62 |
-
]
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"output_type": "execute_result",
|
66 |
-
"data": {
|
67 |
-
"text/plain": [
|
68 |
-
"<All keys matched successfully>"
|
69 |
-
]
|
70 |
-
},
|
71 |
-
"metadata": {},
|
72 |
-
"execution_count": 9
|
73 |
-
}
|
74 |
-
],
|
75 |
-
"source": [
|
76 |
-
"# Check if GPU is available and set the device accordingly\n",
|
77 |
-
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
78 |
-
"print(f\"Using device: {device}\")\n",
|
79 |
-
"\n",
|
80 |
-
"# Create an instance of your model and load it to the device\n",
|
81 |
-
"model = QLNet().to(device)\n",
|
82 |
-
"\n",
|
83 |
-
"# Load the model weights\n",
|
84 |
-
"model.load_state_dict(torch.load('qlnet-50-v0.pth.tar', map_location=device)['state_dict'])"
|
85 |
-
]
|
86 |
-
},
|
87 |
-
{
|
88 |
-
"cell_type": "code",
|
89 |
-
"execution_count": 10,
|
90 |
-
"id": "f14d984a",
|
91 |
-
"metadata": {
|
92 |
-
"scrolled": true,
|
93 |
-
"colab": {
|
94 |
-
"base_uri": "https://localhost:8080/"
|
95 |
-
},
|
96 |
-
"id": "f14d984a",
|
97 |
-
"outputId": "efc70253-4bc0-4d0c-92d8-d247118138bc"
|
98 |
-
},
|
99 |
-
"outputs": [
|
100 |
-
{
|
101 |
-
"output_type": "execute_result",
|
102 |
-
"data": {
|
103 |
-
"text/plain": [
|
104 |
-
"QLNet(\n",
|
105 |
-
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
|
106 |
-
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
107 |
-
" (act1): ReLU(inplace=True)\n",
|
108 |
-
" (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
|
109 |
-
" (layer1): Sequential(\n",
|
110 |
-
" (0): QLBlock(\n",
|
111 |
-
" (conv1): ConvBN(\n",
|
112 |
-
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
113 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
114 |
-
" )\n",
|
115 |
-
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
116 |
-
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
117 |
-
" (conv3): ConvBN(\n",
|
118 |
-
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
119 |
-
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
120 |
-
" )\n",
|
121 |
-
" (skip): Identity()\n",
|
122 |
-
" (act3): hardball()\n",
|
123 |
-
" )\n",
|
124 |
-
" (1): QLBlock(\n",
|
125 |
-
" (conv1): ConvBN(\n",
|
126 |
-
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
127 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
128 |
-
" )\n",
|
129 |
-
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
130 |
-
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
131 |
-
" (conv3): ConvBN(\n",
|
132 |
-
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
133 |
-
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
134 |
-
" )\n",
|
135 |
-
" (skip): Identity()\n",
|
136 |
-
" (act3): hardball()\n",
|
137 |
-
" )\n",
|
138 |
-
" (2): QLBlock(\n",
|
139 |
-
" (conv1): ConvBN(\n",
|
140 |
-
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
141 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
142 |
-
" )\n",
|
143 |
-
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
144 |
-
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
145 |
-
" (conv3): ConvBN(\n",
|
146 |
-
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
147 |
-
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
148 |
-
" )\n",
|
149 |
-
" (skip): Identity()\n",
|
150 |
-
" (act3): hardball()\n",
|
151 |
-
" )\n",
|
152 |
-
" )\n",
|
153 |
-
" (layer2): Sequential(\n",
|
154 |
-
" (0): QLBlock(\n",
|
155 |
-
" (conv1): ConvBN(\n",
|
156 |
-
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
157 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
158 |
-
" )\n",
|
159 |
-
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=256, bias=False)\n",
|
160 |
-
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
161 |
-
" (conv3): ConvBN(\n",
|
162 |
-
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
163 |
-
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
164 |
-
" )\n",
|
165 |
-
" (skip): ConvBN(\n",
|
166 |
-
" (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
167 |
-
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
168 |
-
" )\n",
|
169 |
-
" (act3): hardball()\n",
|
170 |
-
" )\n",
|
171 |
-
" (1): QLBlock(\n",
|
172 |
-
" (conv1): ConvBN(\n",
|
173 |
-
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
174 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
175 |
-
" )\n",
|
176 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
177 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
178 |
-
" (conv3): ConvBN(\n",
|
179 |
-
" (conv): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
180 |
-
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
181 |
-
" )\n",
|
182 |
-
" (skip): Identity()\n",
|
183 |
-
" (act3): hardball()\n",
|
184 |
-
" )\n",
|
185 |
-
" (2): QLBlock(\n",
|
186 |
-
" (conv1): ConvBN(\n",
|
187 |
-
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
188 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
189 |
-
" )\n",
|
190 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
191 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
192 |
-
" (conv3): ConvBN(\n",
|
193 |
-
" (conv): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
194 |
-
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
195 |
-
" )\n",
|
196 |
-
" (skip): Identity()\n",
|
197 |
-
" (act3): hardball()\n",
|
198 |
-
" )\n",
|
199 |
-
" (3): QLBlock(\n",
|
200 |
-
" (conv1): ConvBN(\n",
|
201 |
-
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
202 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
203 |
-
" )\n",
|
204 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
205 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
206 |
-
" (conv3): ConvBN(\n",
|
207 |
-
" (conv): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
208 |
-
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
209 |
-
" )\n",
|
210 |
-
" (skip): Identity()\n",
|
211 |
-
" (act3): hardball()\n",
|
212 |
-
" )\n",
|
213 |
-
" )\n",
|
214 |
-
" (layer3): Sequential(\n",
|
215 |
-
" (0): QLBlock(\n",
|
216 |
-
" (conv1): ConvBN(\n",
|
217 |
-
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
218 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
219 |
-
" )\n",
|
220 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=512, bias=False)\n",
|
221 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
222 |
-
" (conv3): ConvBN(\n",
|
223 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
224 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
225 |
-
" )\n",
|
226 |
-
" (skip): ConvBN(\n",
|
227 |
-
" (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
228 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
229 |
-
" )\n",
|
230 |
-
" (act3): hardball()\n",
|
231 |
-
" )\n",
|
232 |
-
" (1): QLBlock(\n",
|
233 |
-
" (conv1): ConvBN(\n",
|
234 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
235 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
236 |
-
" )\n",
|
237 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
238 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
239 |
-
" (conv3): ConvBN(\n",
|
240 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
241 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
242 |
-
" )\n",
|
243 |
-
" (skip): Identity()\n",
|
244 |
-
" (act3): hardball()\n",
|
245 |
-
" )\n",
|
246 |
-
" (2): QLBlock(\n",
|
247 |
-
" (conv1): ConvBN(\n",
|
248 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
249 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
250 |
-
" )\n",
|
251 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
252 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
253 |
-
" (conv3): ConvBN(\n",
|
254 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
255 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
256 |
-
" )\n",
|
257 |
-
" (skip): Identity()\n",
|
258 |
-
" (act3): hardball()\n",
|
259 |
-
" )\n",
|
260 |
-
" (3): QLBlock(\n",
|
261 |
-
" (conv1): ConvBN(\n",
|
262 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
263 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
264 |
-
" )\n",
|
265 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
266 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
267 |
-
" (conv3): ConvBN(\n",
|
268 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
269 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
270 |
-
" )\n",
|
271 |
-
" (skip): Identity()\n",
|
272 |
-
" (act3): hardball()\n",
|
273 |
-
" )\n",
|
274 |
-
" (4): QLBlock(\n",
|
275 |
-
" (conv1): ConvBN(\n",
|
276 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
277 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
278 |
-
" )\n",
|
279 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
280 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
281 |
-
" (conv3): ConvBN(\n",
|
282 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
283 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
284 |
-
" )\n",
|
285 |
-
" (skip): Identity()\n",
|
286 |
-
" (act3): hardball()\n",
|
287 |
-
" )\n",
|
288 |
-
" (5): QLBlock(\n",
|
289 |
-
" (conv1): ConvBN(\n",
|
290 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
291 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
292 |
-
" )\n",
|
293 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
294 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
295 |
-
" (conv3): ConvBN(\n",
|
296 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
297 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
298 |
-
" )\n",
|
299 |
-
" (skip): Identity()\n",
|
300 |
-
" (act3): hardball()\n",
|
301 |
-
" )\n",
|
302 |
-
" )\n",
|
303 |
-
" (layer4): Sequential(\n",
|
304 |
-
" (0): QLBlock(\n",
|
305 |
-
" (conv1): ConvBN(\n",
|
306 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
307 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
308 |
-
" )\n",
|
309 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=512, bias=False)\n",
|
310 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
311 |
-
" (conv3): ConvBN(\n",
|
312 |
-
" (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
313 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
314 |
-
" )\n",
|
315 |
-
" (skip): ConvBN(\n",
|
316 |
-
" (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
317 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
318 |
-
" )\n",
|
319 |
-
" (act3): hardball()\n",
|
320 |
-
" )\n",
|
321 |
-
" (1): QLBlock(\n",
|
322 |
-
" (conv1): ConvBN(\n",
|
323 |
-
" (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
324 |
-
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
325 |
-
" )\n",
|
326 |
-
" (conv2): Conv2d(1024, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
327 |
-
" (bn2): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
328 |
-
" (conv3): ConvBN(\n",
|
329 |
-
" (conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
330 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
331 |
-
" )\n",
|
332 |
-
" (skip): Identity()\n",
|
333 |
-
" (act3): hardball()\n",
|
334 |
-
" )\n",
|
335 |
-
" (2): QLBlock(\n",
|
336 |
-
" (conv1): ConvBN(\n",
|
337 |
-
" (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
338 |
-
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
339 |
-
" )\n",
|
340 |
-
" (conv2): Conv2d(1024, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
341 |
-
" (bn2): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
342 |
-
" (conv3): ConvBN(\n",
|
343 |
-
" (conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
344 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
345 |
-
" )\n",
|
346 |
-
" (skip): Identity()\n",
|
347 |
-
" (act3): hardball()\n",
|
348 |
-
" )\n",
|
349 |
-
" )\n",
|
350 |
-
" (act): hardball()\n",
|
351 |
-
" (global_pool): SelectAdaptivePool2d(pool_type=avg, flatten=Flatten(start_dim=1, end_dim=-1))\n",
|
352 |
-
" (fc): Linear(in_features=512, out_features=1000, bias=True)\n",
|
353 |
-
")"
|
354 |
-
]
|
355 |
-
},
|
356 |
-
"metadata": {},
|
357 |
-
"execution_count": 10
|
358 |
-
}
|
359 |
-
],
|
360 |
-
"source": [
|
361 |
-
"model.eval()"
|
362 |
-
]
|
363 |
-
},
|
364 |
-
{
|
365 |
-
"cell_type": "code",
|
366 |
-
"execution_count": 12,
|
367 |
-
"id": "2099b937",
|
368 |
-
"metadata": {
|
369 |
-
"colab": {
|
370 |
-
"base_uri": "https://localhost:8080/"
|
371 |
-
},
|
372 |
-
"id": "2099b937",
|
373 |
-
"outputId": "ac4557a4-ed2a-47b2-eca7-d9a337fff3f1"
|
374 |
-
},
|
375 |
-
"outputs": [
|
376 |
-
{
|
377 |
-
"output_type": "stream",
|
378 |
-
"name": "stdout",
|
379 |
-
"text": [
|
380 |
-
"layer1 >>\n",
|
381 |
-
"torch.Size([512, 64, 1, 1])\n",
|
382 |
-
"torch.Size([64, 512, 1, 1])\n",
|
383 |
-
"torch.Size([512, 64, 1, 1])\n",
|
384 |
-
"torch.Size([64, 512, 1, 1])\n",
|
385 |
-
"torch.Size([512, 64, 1, 1])\n",
|
386 |
-
"torch.Size([64, 512, 1, 1])\n",
|
387 |
-
"layer2 >>\n",
|
388 |
-
"torch.Size([512, 64, 1, 1])\n",
|
389 |
-
"torch.Size([128, 512, 1, 1])\n",
|
390 |
-
"torch.Size([128, 64, 1, 1])\n",
|
391 |
-
"torch.Size([1024, 128, 1, 1])\n",
|
392 |
-
"torch.Size([128, 1024, 1, 1])\n",
|
393 |
-
"torch.Size([1024, 128, 1, 1])\n",
|
394 |
-
"torch.Size([128, 1024, 1, 1])\n",
|
395 |
-
"torch.Size([1024, 128, 1, 1])\n",
|
396 |
-
"torch.Size([128, 1024, 1, 1])\n",
|
397 |
-
"layer3 >>\n",
|
398 |
-
"torch.Size([1024, 128, 1, 1])\n",
|
399 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
400 |
-
"torch.Size([256, 128, 1, 1])\n",
|
401 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
402 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
403 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
404 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
405 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
406 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
407 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
408 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
409 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
410 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
411 |
-
"layer4 >>\n",
|
412 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
413 |
-
"torch.Size([512, 1024, 1, 1])\n",
|
414 |
-
"torch.Size([512, 256, 1, 1])\n",
|
415 |
-
"torch.Size([2048, 512, 1, 1])\n",
|
416 |
-
"torch.Size([512, 2048, 1, 1])\n",
|
417 |
-
"torch.Size([2048, 512, 1, 1])\n",
|
418 |
-
"torch.Size([512, 2048, 1, 1])\n"
|
419 |
-
]
|
420 |
-
}
|
421 |
-
],
|
422 |
-
"source": [
|
423 |
-
"# fuse ConvBN\n",
|
424 |
-
"i = 1\n",
|
425 |
-
"for layer in [model.layer1, model.layer2, model.layer3, model.layer4]:\n",
|
426 |
-
" print(f'layer{i} >>')\n",
|
427 |
-
" for block in layer:\n",
|
428 |
-
" # Fuse the weights in conv1 and conv3\n",
|
429 |
-
" block.conv1.fuse_bn()\n",
|
430 |
-
" print(block.conv1.fused_weight.size())\n",
|
431 |
-
" block.conv3.fuse_bn()\n",
|
432 |
-
" print(block.conv3.fused_weight.size())\n",
|
433 |
-
" if not isinstance(block.skip, torch.nn.Identity):\n",
|
434 |
-
" layer[0].skip.fuse_bn()\n",
|
435 |
-
" print(layer[0].skip.fused_weight.size())\n",
|
436 |
-
" i += 1"
|
437 |
-
]
|
438 |
-
},
|
439 |
-
{
|
440 |
-
"cell_type": "code",
|
441 |
-
"execution_count": 13,
|
442 |
-
"id": "b3a55f82",
|
443 |
-
"metadata": {
|
444 |
-
"id": "b3a55f82"
|
445 |
-
},
|
446 |
-
"outputs": [],
|
447 |
-
"source": [
|
448 |
-
"x = torch.randn(5,3,224,224)"
|
449 |
-
]
|
450 |
-
},
|
451 |
{
|
452 |
-
|
453 |
-
"
|
454 |
-
|
455 |
-
"metadata": {
|
456 |
-
"colab": {
|
457 |
-
"base_uri": "https://localhost:8080/"
|
458 |
-
},
|
459 |
-
"id": "dccbf19c",
|
460 |
-
"outputId": "4a5409f4-761b-4682-a5be-5f55fd595135"
|
461 |
-
},
|
462 |
-
"outputs": [
|
463 |
-
{
|
464 |
-
"output_type": "stream",
|
465 |
-
"name": "stdout",
|
466 |
-
"text": [
|
467 |
-
"torch.Size([5, 1000])\n"
|
468 |
-
]
|
469 |
-
}
|
470 |
-
],
|
471 |
-
"source": [
|
472 |
-
"y_old = model(x)\n",
|
473 |
-
"print(y_old.size())"
|
474 |
]
|
475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
{
|
477 |
-
|
478 |
-
"
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
]
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
{
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
"
|
525 |
-
|
526 |
-
|
527 |
-
"
|
528 |
-
"
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
]
|
534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
{
|
536 |
-
|
537 |
-
"
|
538 |
-
|
539 |
-
"metadata": {
|
540 |
-
"colab": {
|
541 |
-
"base_uri": "https://localhost:8080/"
|
542 |
-
},
|
543 |
-
"id": "e5d3628d",
|
544 |
-
"outputId": "667cfe17-e3fb-4009-9553-a765c6377321"
|
545 |
-
},
|
546 |
-
"outputs": [
|
547 |
-
{
|
548 |
-
"output_type": "stream",
|
549 |
-
"name": "stdout",
|
550 |
-
"text": [
|
551 |
-
"8.472800254821777e-05\n"
|
552 |
-
]
|
553 |
-
}
|
554 |
-
],
|
555 |
-
"source": [
|
556 |
-
"y_new = model(x)\n",
|
557 |
-
"print((y_new - y_old).abs().max().item())"
|
558 |
]
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
"id": "9fce3a38",
|
564 |
-
"metadata": {
|
565 |
-
"id": "9fce3a38"
|
566 |
-
},
|
567 |
-
"outputs": [],
|
568 |
-
"source": []
|
569 |
-
},
|
570 |
-
{
|
571 |
-
"cell_type": "code",
|
572 |
-
"execution_count": null,
|
573 |
-
"id": "5a54fe8b",
|
574 |
-
"metadata": {
|
575 |
-
"id": "5a54fe8b"
|
576 |
-
},
|
577 |
-
"outputs": [],
|
578 |
-
"source": []
|
579 |
}
|
580 |
-
|
581 |
-
|
582 |
-
"
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
"
|
600 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
601 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
602 |
},
|
603 |
-
"
|
604 |
-
|
605 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "71b6152c",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import torch, timm\n",
|
11 |
+
"from qlnet import QLNet"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 2,
|
17 |
+
"id": "4e7ed219",
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"m = QLNet()"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 3,
|
27 |
+
"id": "3f703be8",
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"state_dict = torch.load('qlnet-10m.pth.tar')"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": 4,
|
37 |
+
"id": "435e2358",
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
{
|
41 |
+
"data": {
|
42 |
+
"text/plain": [
|
43 |
+
"<All keys matched successfully>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
]
|
45 |
+
},
|
46 |
+
"execution_count": 4,
|
47 |
+
"metadata": {},
|
48 |
+
"output_type": "execute_result"
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"source": [
|
52 |
+
"m.load_state_dict(state_dict)"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 5,
|
58 |
+
"id": "f14d984a",
|
59 |
+
"metadata": {
|
60 |
+
"scrolled": true
|
61 |
+
},
|
62 |
+
"outputs": [
|
63 |
{
|
64 |
+
"data": {
|
65 |
+
"text/plain": [
|
66 |
+
"QLNet(\n",
|
67 |
+
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
|
68 |
+
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
69 |
+
" (act1): ReLU(inplace=True)\n",
|
70 |
+
" (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
|
71 |
+
" (layer1): Sequential(\n",
|
72 |
+
" (0): QLBlock(\n",
|
73 |
+
" (conv1): ConvBN(\n",
|
74 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
75 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
76 |
+
" )\n",
|
77 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
78 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
79 |
+
" (conv3): ConvBN(\n",
|
80 |
+
" (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
81 |
+
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
82 |
+
" )\n",
|
83 |
+
" (skip): Identity()\n",
|
84 |
+
" (act3): hardball()\n",
|
85 |
+
" )\n",
|
86 |
+
" (1): QLBlock(\n",
|
87 |
+
" (conv1): ConvBN(\n",
|
88 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
89 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
90 |
+
" )\n",
|
91 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
92 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
93 |
+
" (conv3): ConvBN(\n",
|
94 |
+
" (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
95 |
+
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
96 |
+
" )\n",
|
97 |
+
" (skip): Identity()\n",
|
98 |
+
" (act3): hardball()\n",
|
99 |
+
" )\n",
|
100 |
+
" (2): QLBlock(\n",
|
101 |
+
" (conv1): ConvBN(\n",
|
102 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
103 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
104 |
+
" )\n",
|
105 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
106 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
107 |
+
" (conv3): ConvBN(\n",
|
108 |
+
" (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
109 |
+
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
110 |
+
" )\n",
|
111 |
+
" (skip): Identity()\n",
|
112 |
+
" (act3): hardball()\n",
|
113 |
+
" )\n",
|
114 |
+
" )\n",
|
115 |
+
" (layer2): Sequential(\n",
|
116 |
+
" (0): QLBlock(\n",
|
117 |
+
" (conv1): ConvBN(\n",
|
118 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
119 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
120 |
+
" )\n",
|
121 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=256, bias=False)\n",
|
122 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
123 |
+
" (conv3): ConvBN(\n",
|
124 |
+
" (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
125 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
126 |
+
" )\n",
|
127 |
+
" (skip): ConvBN(\n",
|
128 |
+
" (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
129 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
130 |
+
" )\n",
|
131 |
+
" (act3): hardball()\n",
|
132 |
+
" )\n",
|
133 |
+
" (1): QLBlock(\n",
|
134 |
+
" (conv1): ConvBN(\n",
|
135 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
136 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
137 |
+
" )\n",
|
138 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
139 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
140 |
+
" (conv3): ConvBN(\n",
|
141 |
+
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
142 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
143 |
+
" )\n",
|
144 |
+
" (skip): Identity()\n",
|
145 |
+
" (act3): hardball()\n",
|
146 |
+
" )\n",
|
147 |
+
" (2): QLBlock(\n",
|
148 |
+
" (conv1): ConvBN(\n",
|
149 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
150 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
151 |
+
" )\n",
|
152 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
153 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
154 |
+
" (conv3): ConvBN(\n",
|
155 |
+
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
156 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
157 |
+
" )\n",
|
158 |
+
" (skip): Identity()\n",
|
159 |
+
" (act3): hardball()\n",
|
160 |
+
" )\n",
|
161 |
+
" (3): QLBlock(\n",
|
162 |
+
" (conv1): ConvBN(\n",
|
163 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
164 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
165 |
+
" )\n",
|
166 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
167 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
168 |
+
" (conv3): ConvBN(\n",
|
169 |
+
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
170 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
171 |
+
" )\n",
|
172 |
+
" (skip): Identity()\n",
|
173 |
+
" (act3): hardball()\n",
|
174 |
+
" )\n",
|
175 |
+
" )\n",
|
176 |
+
" (layer3): Sequential(\n",
|
177 |
+
" (0): QLBlock(\n",
|
178 |
+
" (conv1): ConvBN(\n",
|
179 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
180 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
181 |
+
" )\n",
|
182 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=512, bias=False)\n",
|
183 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
184 |
+
" (conv3): ConvBN(\n",
|
185 |
+
" (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
186 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
187 |
+
" )\n",
|
188 |
+
" (skip): ConvBN(\n",
|
189 |
+
" (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
190 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
191 |
+
" )\n",
|
192 |
+
" (act3): hardball()\n",
|
193 |
+
" )\n",
|
194 |
+
" (1): QLBlock(\n",
|
195 |
+
" (conv1): ConvBN(\n",
|
196 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
197 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
198 |
+
" )\n",
|
199 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
200 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
201 |
+
" (conv3): ConvBN(\n",
|
202 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
203 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
204 |
+
" )\n",
|
205 |
+
" (skip): Identity()\n",
|
206 |
+
" (act3): hardball()\n",
|
207 |
+
" )\n",
|
208 |
+
" (2): QLBlock(\n",
|
209 |
+
" (conv1): ConvBN(\n",
|
210 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
211 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
212 |
+
" )\n",
|
213 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
214 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
215 |
+
" (conv3): ConvBN(\n",
|
216 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
217 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
218 |
+
" )\n",
|
219 |
+
" (skip): Identity()\n",
|
220 |
+
" (act3): hardball()\n",
|
221 |
+
" )\n",
|
222 |
+
" (3): QLBlock(\n",
|
223 |
+
" (conv1): ConvBN(\n",
|
224 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
225 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
226 |
+
" )\n",
|
227 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
228 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
229 |
+
" (conv3): ConvBN(\n",
|
230 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
231 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
232 |
+
" )\n",
|
233 |
+
" (skip): Identity()\n",
|
234 |
+
" (act3): hardball()\n",
|
235 |
+
" )\n",
|
236 |
+
" (4): QLBlock(\n",
|
237 |
+
" (conv1): ConvBN(\n",
|
238 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
239 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
240 |
+
" )\n",
|
241 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
242 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
243 |
+
" (conv3): ConvBN(\n",
|
244 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
245 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
246 |
+
" )\n",
|
247 |
+
" (skip): Identity()\n",
|
248 |
+
" (act3): hardball()\n",
|
249 |
+
" )\n",
|
250 |
+
" (5): QLBlock(\n",
|
251 |
+
" (conv1): ConvBN(\n",
|
252 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
253 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
254 |
+
" )\n",
|
255 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
256 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
257 |
+
" (conv3): ConvBN(\n",
|
258 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
259 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
260 |
+
" )\n",
|
261 |
+
" (skip): Identity()\n",
|
262 |
+
" (act3): hardball()\n",
|
263 |
+
" )\n",
|
264 |
+
" )\n",
|
265 |
+
" (layer4): Sequential(\n",
|
266 |
+
" (0): QLBlock(\n",
|
267 |
+
" (conv1): ConvBN(\n",
|
268 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
269 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
270 |
+
" )\n",
|
271 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=1024, bias=False)\n",
|
272 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
273 |
+
" (conv3): ConvBN(\n",
|
274 |
+
" (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
275 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
276 |
+
" )\n",
|
277 |
+
" (skip): ConvBN(\n",
|
278 |
+
" (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
279 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
280 |
+
" )\n",
|
281 |
+
" (act3): hardball()\n",
|
282 |
+
" )\n",
|
283 |
+
" (1): QLBlock(\n",
|
284 |
+
" (conv1): ConvBN(\n",
|
285 |
+
" (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
286 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
287 |
+
" )\n",
|
288 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
289 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
290 |
+
" (conv3): ConvBN(\n",
|
291 |
+
" (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
292 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
293 |
+
" )\n",
|
294 |
+
" (skip): Identity()\n",
|
295 |
+
" (act3): hardball()\n",
|
296 |
+
" )\n",
|
297 |
+
" (2): QLBlock(\n",
|
298 |
+
" (conv1): ConvBN(\n",
|
299 |
+
" (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
300 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
301 |
+
" )\n",
|
302 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
303 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
304 |
+
" (conv3): ConvBN(\n",
|
305 |
+
" (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
306 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
307 |
+
" )\n",
|
308 |
+
" (skip): Identity()\n",
|
309 |
+
" (act3): hardball()\n",
|
310 |
+
" )\n",
|
311 |
+
" )\n",
|
312 |
+
" (act): hardball()\n",
|
313 |
+
" (global_pool): SelectAdaptivePool2d (pool_type=avg, flatten=Flatten(start_dim=1, end_dim=-1))\n",
|
314 |
+
" (fc): Linear(in_features=512, out_features=1000, bias=True)\n",
|
315 |
+
")"
|
316 |
]
|
317 |
+
},
|
318 |
+
"execution_count": 5,
|
319 |
+
"metadata": {},
|
320 |
+
"output_type": "execute_result"
|
321 |
+
}
|
322 |
+
],
|
323 |
+
"source": [
|
324 |
+
"m.eval()"
|
325 |
+
]
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"cell_type": "code",
|
329 |
+
"execution_count": 6,
|
330 |
+
"id": "2099b937",
|
331 |
+
"metadata": {},
|
332 |
+
"outputs": [
|
333 |
{
|
334 |
+
"name": "stdout",
|
335 |
+
"output_type": "stream",
|
336 |
+
"text": [
|
337 |
+
"layer1 >>\n",
|
338 |
+
"torch.Size([512, 64, 1, 1])\n",
|
339 |
+
"torch.Size([64, 256, 1, 1])\n",
|
340 |
+
"torch.Size([512, 64, 1, 1])\n",
|
341 |
+
"torch.Size([64, 256, 1, 1])\n",
|
342 |
+
"torch.Size([512, 64, 1, 1])\n",
|
343 |
+
"torch.Size([64, 256, 1, 1])\n",
|
344 |
+
"layer2 >>\n",
|
345 |
+
"torch.Size([512, 64, 1, 1])\n",
|
346 |
+
"torch.Size([128, 256, 1, 1])\n",
|
347 |
+
"torch.Size([128, 64, 1, 1])\n",
|
348 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
349 |
+
"torch.Size([128, 512, 1, 1])\n",
|
350 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
351 |
+
"torch.Size([128, 512, 1, 1])\n",
|
352 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
353 |
+
"torch.Size([128, 512, 1, 1])\n",
|
354 |
+
"layer3 >>\n",
|
355 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
356 |
+
"torch.Size([256, 512, 1, 1])\n",
|
357 |
+
"torch.Size([256, 128, 1, 1])\n",
|
358 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
359 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
360 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
361 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
362 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
363 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
364 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
365 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
366 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
367 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
368 |
+
"layer4 >>\n",
|
369 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
370 |
+
"torch.Size([512, 1024, 1, 1])\n",
|
371 |
+
"torch.Size([512, 256, 1, 1])\n",
|
372 |
+
"torch.Size([2048, 512, 1, 1])\n",
|
373 |
+
"torch.Size([512, 1024, 1, 1])\n",
|
374 |
+
"torch.Size([2048, 512, 1, 1])\n",
|
375 |
+
"torch.Size([512, 1024, 1, 1])\n"
|
376 |
+
]
|
377 |
+
}
|
378 |
+
],
|
379 |
+
"source": [
|
380 |
+
"# fuse ConvBN\n",
|
381 |
+
"i = 1\n",
|
382 |
+
"for layer in [m.layer1, m.layer2, m.layer3, m.layer4]:\n",
|
383 |
+
" print(f'layer{i} >>')\n",
|
384 |
+
" for block in layer:\n",
|
385 |
+
" # Fuse the weights in conv1 and conv3\n",
|
386 |
+
" block.conv1.fuse_bn()\n",
|
387 |
+
" print(block.conv1.fused_weight.size())\n",
|
388 |
+
" block.conv3.fuse_bn()\n",
|
389 |
+
" print(block.conv3.fused_weight.size())\n",
|
390 |
+
" if not isinstance(block.skip, torch.nn.Identity):\n",
|
391 |
+
" layer[0].skip.fuse_bn()\n",
|
392 |
+
" print(layer[0].skip.fused_weight.size())\n",
|
393 |
+
" i += 1"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "code",
|
398 |
+
"execution_count": 7,
|
399 |
+
"id": "b3a55f82",
|
400 |
+
"metadata": {},
|
401 |
+
"outputs": [],
|
402 |
+
"source": [
|
403 |
+
"x = torch.randn(5,3,224,224)"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"execution_count": 8,
|
409 |
+
"id": "dccbf19c",
|
410 |
+
"metadata": {},
|
411 |
+
"outputs": [],
|
412 |
+
"source": [
|
413 |
+
"out_old = m(x)"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"cell_type": "code",
|
418 |
+
"execution_count": 9,
|
419 |
+
"id": "f0c74a04",
|
420 |
+
"metadata": {
|
421 |
+
"scrolled": true
|
422 |
+
},
|
423 |
+
"outputs": [
|
424 |
{
|
425 |
+
"data": {
|
426 |
+
"text/plain": [
|
427 |
+
"torch.Size([5, 1000])"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
]
|
429 |
+
},
|
430 |
+
"execution_count": 9,
|
431 |
+
"metadata": {},
|
432 |
+
"output_type": "execute_result"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
}
|
434 |
+
],
|
435 |
+
"source": [
|
436 |
+
"out_old.size()"
|
437 |
+
]
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"cell_type": "code",
|
441 |
+
"execution_count": 10,
|
442 |
+
"id": "a5991c8f",
|
443 |
+
"metadata": {},
|
444 |
+
"outputs": [],
|
445 |
+
"source": [
|
446 |
+
"def apply_transform(block1, block2, Q, keep_identity=True):\n",
|
447 |
+
" with torch.no_grad():\n",
|
448 |
+
" # Ensure that the out_channels of block1 is equal to the in_channels of block2\n",
|
449 |
+
" assert Q.size()[0] == Q.size()[1], \"Q needs to be a square matrix\"\n",
|
450 |
+
" n = Q.size()[0]\n",
|
451 |
+
" assert block1.conv3.conv.out_channels == n and block2.conv1.conv.in_channels == n, \"Mismatched channels between blocks\"\n",
|
452 |
+
"\n",
|
453 |
+
" n = block1.conv3.conv.out_channels\n",
|
454 |
+
" \n",
|
455 |
+
" # Calculate the inverse of Q\n",
|
456 |
+
" Q_inv = torch.inverse(Q)\n",
|
457 |
+
"\n",
|
458 |
+
" # Modify the weights of conv layers in block1\n",
|
459 |
+
" block1.conv3.fused_weight.data = torch.einsum('ij,jklm->iklm', Q, block1.conv3.fused_weight.data)\n",
|
460 |
+
" block1.conv3.fused_bias.data = torch.einsum('ij,j->i', Q, block1.conv3.fused_bias.data)\n",
|
461 |
+
" \n",
|
462 |
+
" if isinstance(block1.skip, torch.nn.Identity):\n",
|
463 |
+
" if not keep_identity:\n",
|
464 |
+
" block1.skip = torch.nn.Conv2d(n, n, kernel_size=1, bias=False)\n",
|
465 |
+
" block1.skip.weight.data = Q.unsqueeze(-1).unsqueeze(-1)\n",
|
466 |
+
" else:\n",
|
467 |
+
" block1.skip.fused_weight.data = torch.einsum('ij,jklm->iklm', Q, block1.skip.fused_weight.data)\n",
|
468 |
+
" block1.skip.fused_bias.data = torch.einsum('ij,j->i', Q, block1.skip.fused_bias.data)\n",
|
469 |
+
"\n",
|
470 |
+
" # Modify the weights of conv layers in block2\n",
|
471 |
+
" block2.conv1.fused_weight.data = torch.einsum('ki,jklm->jilm', Q_inv, block2.conv1.fused_weight.data)\n",
|
472 |
+
" \n",
|
473 |
+
" if isinstance(block2.skip, torch.nn.Identity):\n",
|
474 |
+
" if not keep_identity:\n",
|
475 |
+
" block2.skip = torch.nn.Conv2d(n, n, kernel_size=1, bias=False)\n",
|
476 |
+
" block2.skip.weight.data = Q_inv.unsqueeze(-1).unsqueeze(-1)\n",
|
477 |
+
" else:\n",
|
478 |
+
" block2.skip.fused_weight.data = torch.einsum('ki,jklm->jilm', Q_inv, block2.skip.fused_weight.data)\n"
|
479 |
+
]
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"cell_type": "code",
|
483 |
+
"execution_count": 11,
|
484 |
+
"id": "dd96acd7",
|
485 |
+
"metadata": {},
|
486 |
+
"outputs": [],
|
487 |
+
"source": [
|
488 |
+
"Q = torch.nn.init.orthogonal_(torch.empty(256, 256))\n",
|
489 |
+
"for i in range(5):\n",
|
490 |
+
" apply_transform(m.layer3[i], m.layer3[i+1], Q, True)\n",
|
491 |
+
"apply_transform(m.layer3[5], m.layer4[0], Q, True)"
|
492 |
+
]
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"cell_type": "code",
|
496 |
+
"execution_count": 12,
|
497 |
+
"id": "e5d3628d",
|
498 |
+
"metadata": {},
|
499 |
+
"outputs": [
|
500 |
+
{
|
501 |
+
"name": "stdout",
|
502 |
+
"output_type": "stream",
|
503 |
+
"text": [
|
504 |
+
"6.666779518127441e-05\n"
|
505 |
+
]
|
506 |
}
|
507 |
+
],
|
508 |
+
"source": [
|
509 |
+
"out_new = m(x)\n",
|
510 |
+
"print((out_new - out_old).abs().max().item())"
|
511 |
+
]
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"cell_type": "code",
|
515 |
+
"execution_count": null,
|
516 |
+
"id": "9fce3a38",
|
517 |
+
"metadata": {},
|
518 |
+
"outputs": [],
|
519 |
+
"source": []
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"cell_type": "code",
|
523 |
+
"execution_count": null,
|
524 |
+
"id": "5a54fe8b",
|
525 |
+
"metadata": {},
|
526 |
+
"outputs": [],
|
527 |
+
"source": []
|
528 |
+
}
|
529 |
+
],
|
530 |
+
"metadata": {
|
531 |
+
"kernelspec": {
|
532 |
+
"display_name": "Python 3 (ipykernel)",
|
533 |
+
"language": "python",
|
534 |
+
"name": "python3"
|
535 |
},
|
536 |
+
"language_info": {
|
537 |
+
"codemirror_mode": {
|
538 |
+
"name": "ipython",
|
539 |
+
"version": 3
|
540 |
+
},
|
541 |
+
"file_extension": ".py",
|
542 |
+
"mimetype": "text/x-python",
|
543 |
+
"name": "python",
|
544 |
+
"nbconvert_exporter": "python",
|
545 |
+
"pygments_lexer": "ipython3",
|
546 |
+
"version": "3.10.6"
|
547 |
+
}
|
548 |
+
},
|
549 |
+
"nbformat": 4,
|
550 |
+
"nbformat_minor": 5
|
551 |
+
}
|
qlnet.py
CHANGED
@@ -104,7 +104,7 @@ class QLBlock(nn.Module): # quasilinear hyperbolic system
|
|
104 |
):
|
105 |
super(QLBlock, self).__init__()
|
106 |
|
107 |
-
k = 4 if inplanes <=
|
108 |
width = inplanes * k
|
109 |
outplanes = inplanes if downsample is None else inplanes * 2
|
110 |
first_dilation = first_dilation or dilation
|
@@ -114,12 +114,12 @@ class QLBlock(nn.Module): # quasilinear hyperbolic system
|
|
114 |
dilation=first_dilation, groups=1, bias=False),
|
115 |
norm_layer(width*2))
|
116 |
|
117 |
-
self.conv2 = nn.Conv2d(width, width
|
118 |
padding=1, dilation=first_dilation, groups=width, bias=False)
|
119 |
-
self.bn2 = norm_layer(width
|
120 |
|
121 |
self.conv3 = ConvBN(
|
122 |
-
nn.Conv2d(width
|
123 |
norm_layer(outplanes))
|
124 |
|
125 |
self.skip = ConvBN(
|
|
|
104 |
):
|
105 |
super(QLBlock, self).__init__()
|
106 |
|
107 |
+
k = 4 if inplanes <= 256 else 2
|
108 |
width = inplanes * k
|
109 |
outplanes = inplanes if downsample is None else inplanes * 2
|
110 |
first_dilation = first_dilation or dilation
|
|
|
114 |
dilation=first_dilation, groups=1, bias=False),
|
115 |
norm_layer(width*2))
|
116 |
|
117 |
+
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
|
118 |
padding=1, dilation=first_dilation, groups=width, bias=False)
|
119 |
+
self.bn2 = norm_layer(width)
|
120 |
|
121 |
self.conv3 = ConvBN(
|
122 |
+
nn.Conv2d(width, outplanes, kernel_size=1, groups=1, bias=False),
|
123 |
norm_layer(outplanes))
|
124 |
|
125 |
self.skip = ConvBN(
|