--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model-index: - name: mixtral-lora-follow-instruction results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model_type: AutoModelForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false chat_template: inst datasets: - path: ./data/raw_format/tool_used_training_small.jsonl type: sharegpt conversation: mistral - path: ./data/raw_format/tool_not_used_training_small.jsonl type: sharegpt conversation: mistral - path: ./data/raw_format/no_tools_training_small.jsonl type: sharegpt conversation: mistral - path: ./data/akoksal_lon_form.jsonl type: sharegpt conversation: mistral - path: ./data/dolly.jsonl type: sharegpt conversation: mistral dataset_prepared_path: last_run_prepared val_set_size: 0.01 output_dir: ./mixtral-lora-2-epochs-r64 adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: hub_model_id: liuylhf/mixtral-lora-follow-instruction hub_strategy: end # lora_target_linear: true model_config: output_router_logits: true lora_target_modules: - q_proj - v_proj - k_proj - o_proj wandb_project: function-call wandb_name: mixtral-instruct-raw-data-v3 wandb_log_model: end gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 0.5 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.001 adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true # loss_watchdog_threshold: 5.0 # loss_watchdog_patience: 3 warmup_steps: 10 # evals_per_epoch: 20 eval_steps: 0.5 save_steps: 0.5 eval_table_size: eval_max_new_tokens: 256 # saves_per_epoch: 1 debug: deepspeed: weight_decay: 0 ```

# mixtral-lora-follow-instruction This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 0.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.0028 | 0.01 | 1 | 4.1157 | | 0.6411 | 0.25 | 39 | 0.6506 | ### Framework versions - PEFT 0.8.2 - Transformers 4.39.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.0