End of training
Browse files- README.md +77 -0
- config.json +27 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: microsoft/Multilingual-MiniLM-L12-H384
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: m-minilm-l12-h384-mal-fake-news-detection-finetune
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# m-minilm-l12-h384-mal-fake-news-detection-finetune
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.4117
|
23 |
+
- Accuracy: 0.8294
|
24 |
+
- F1: 0.8260
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.0001
|
44 |
+
- train_batch_size: 256
|
45 |
+
- eval_batch_size: 256
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 6
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
54 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
|
55 |
+
| 0.6928 | 0.3846 | 5 | 0.6868 | 0.6233 | 0.4428 |
|
56 |
+
| 0.6747 | 0.7692 | 10 | 0.6368 | 0.6945 | 0.6631 |
|
57 |
+
| 0.5988 | 1.1538 | 15 | 0.5638 | 0.7399 | 0.7225 |
|
58 |
+
| 0.5515 | 1.5385 | 20 | 0.5705 | 0.7252 | 0.7627 |
|
59 |
+
| 0.5011 | 1.9231 | 25 | 0.4777 | 0.7939 | 0.7857 |
|
60 |
+
| 0.4728 | 2.3077 | 30 | 0.5495 | 0.7362 | 0.7691 |
|
61 |
+
| 0.4543 | 2.6923 | 35 | 0.4529 | 0.8037 | 0.7985 |
|
62 |
+
| 0.4103 | 3.0769 | 40 | 0.4326 | 0.8037 | 0.7975 |
|
63 |
+
| 0.3934 | 3.4615 | 45 | 0.4277 | 0.8049 | 0.8073 |
|
64 |
+
| 0.3582 | 3.8462 | 50 | 0.4283 | 0.8098 | 0.8112 |
|
65 |
+
| 0.332 | 4.2308 | 55 | 0.4182 | 0.8282 | 0.8219 |
|
66 |
+
| 0.318 | 4.6154 | 60 | 0.4175 | 0.8110 | 0.8122 |
|
67 |
+
| 0.3026 | 5.0 | 65 | 0.4094 | 0.8319 | 0.8237 |
|
68 |
+
| 0.2861 | 5.3846 | 70 | 0.4154 | 0.8221 | 0.8230 |
|
69 |
+
| 0.3015 | 5.7692 | 75 | 0.4117 | 0.8294 | 0.8260 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.45.2
|
75 |
+
- Pytorch 2.4.1+cu121
|
76 |
+
- Datasets 3.2.0
|
77 |
+
- Tokenizers 0.20.3
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/Multilingual-MiniLM-L12-H384",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"problem_type": "single_label_classification",
|
21 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.45.2",
|
24 |
+
"type_vocab_size": 2,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 250037
|
27 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b14231096d96161d6894de850357c694eade2b152b4160219666eff7c3371c0d
|
3 |
+
size 470641664
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b489a4a2e77a95cfc0355b30961b8fdbffb0a949d531bf57ec08de991810fbaa
|
3 |
+
size 5304
|