File size: 4,644 Bytes
317fa29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee27ffc
 
 
317fa29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: utf-8 -*-
"""
Created on Mon May  1 19:41:07 2023

@author: Sen
"""

import os
import subprocess
import warnings
from tqdm import tqdm
import argparse
import torch
from transformers import AutoTokenizer, GPT2LMHeadModel

warnings.filterwarnings('ignore')
#Sometimes, using Hugging Face may require a proxy.
#os.environ["http_proxy"] = "http://127.0.0.1:7890"
#os.environ["https_proxy"] = "http://127.0.0.1:7890"


# Set up command line argument parsing
parser = argparse.ArgumentParser()
parser.add_argument('-p', type=str, default=None, help='Input the protein amino acid sequence. Default value is None. Only one of -p and -f should be specified.')
parser.add_argument('-f', type=str, default=None, help='Input the FASTA file. Default value is None. Only one of -p and -f should be specified.')
parser.add_argument('-l', type=str, default='', help='Input the ligand prompt. Default value is an empty string.')
parser.add_argument('-n', type=int, default=100, help='Number of output molecules to generate. Default value is 100.')
parser.add_argument('-d', type=str, default='cuda', help="Hardware device to use. Default value is 'cuda'.")
parser.add_argument('-o', type=str, default='./ligand_output/', help="Output directory for generated molecules. Default value is './ligand_output/'.")

args = parser.parse_args()

protein_seq = args.p
fasta_file = args.f
ligand_prompt = args.l
num_generated = args.n
device = args.d
output_path = args.o


def ifno_mkdirs(dirname):
    if not os.path.exists(dirname):
        os.makedirs(dirname) 

ifno_mkdirs(output_path)

# Function to read in FASTA file
def read_fasta_file(file_path):
    with open(file_path, 'r') as fasta_file:
        sequence = []
        
        for line in fasta_file:
            line = line.strip()
            if not line.startswith('>'):
                sequence.append(line)

        protein_sequence = ''.join(sequence)

    return protein_sequence

# Check if the input is either a protein amino acid sequence or a FASTA file, but not both
if (protein_seq is not None) != (fasta_file is not None):
    if fasta_file is not None:
        protein_seq = read_fasta_file(fasta_file)
    else:
        protein_seq = protein_seq
else:
    print("The input should be either a protein amino acid sequence or a FASTA file, but not both.")

# Load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained('liyuesen/druggpt')
model = GPT2LMHeadModel.from_pretrained("liyuesen/druggpt")

# Generate a prompt for the model
p_prompt = "<|startoftext|><P>" + protein_seq + "<L>"
l_prompt = "" + ligand_prompt 
prompt = p_prompt + l_prompt
print(prompt)

# Move the model to the specified device
model.eval()
device = torch.device(device)
model.to(device)



#Define post-processing function
#Define function to generate SDF files from a list of ligand SMILES using OpenBabel
def get_sdf(ligand_list,output_path):
    for ligand in tqdm(ligand_list):
        filename = output_path + 'ligand_' + ligand +'.sdf'
        cmd = "obabel -:" + ligand + " -osdf -O " + filename + " --gen3d --forcefield mmff94"# --conformer --nconf 1 --score rmsd
        #subprocess.check_call(cmd, shell=True)
        try:
            # 设置超时时间为 30 秒
            output = subprocess.check_output(cmd, timeout=10)
        except subprocess.TimeoutExpired:
            pass
#Define function to filter out empty SDF files
def filter_sdf(output_path):
    filelist = os.listdir(output_path)
    for filename in filelist:
        filepath = os.path.join(output_path,filename)
        with open(filepath,'r') as f:
            text = f.read()
        if len(text)<2:
            os.remove(filepath)




# Generate molecules
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
generated = generated.to(device)


for i in range(100):
    ligand_list = []
    sample_outputs = model.generate(
                                    generated, 
                                    #bos_token_id=random.randint(1,30000),
                                    do_sample=True,   
                                    top_k=5, 
                                    max_length = 1024,
                                    top_p=0.6, 
                                    num_return_sequences=64
                                    )

    for i, sample_output in enumerate(sample_outputs):
        ligand_list.append(tokenizer.decode(sample_output, skip_special_tokens=True).split('<L>')[1])
    torch.cuda.empty_cache()
      
    get_sdf(ligand_list,output_path)
    filter_sdf(output_path)

    if len(os.listdir(output_path))>num_generated:
        break
    else:pass