# -*- coding: utf-8 -*- """ Created on Mon May 1 19:41:07 2023 @author: Sen """ import os import subprocess import warnings from tqdm import tqdm import argparse import torch from transformers import AutoTokenizer, GPT2LMHeadModel warnings.filterwarnings('ignore') os.environ["http_proxy"] = "http://127.0.0.1:7890" os.environ["https_proxy"] = "http://127.0.0.1:7890" # Set up command line argument parsing parser = argparse.ArgumentParser() parser.add_argument('-p', type=str, default=None, help='Input the protein amino acid sequence. Default value is None. Only one of -p and -f should be specified.') parser.add_argument('-f', type=str, default=None, help='Input the FASTA file. Default value is None. Only one of -p and -f should be specified.') parser.add_argument('-l', type=str, default='', help='Input the ligand prompt. Default value is an empty string.') parser.add_argument('-n', type=int, default=100, help='Number of output molecules to generate. Default value is 100.') parser.add_argument('-d', type=str, default='cuda', help="Hardware device to use. Default value is 'cuda'.") parser.add_argument('-o', type=str, default='./ligand_output/', help="Output directory for generated molecules. Default value is './ligand_output/'.") args = parser.parse_args() protein_seq = args.p fasta_file = args.f ligand_prompt = args.l num_generated = args.n device = args.d output_path = args.o def ifno_mkdirs(dirname): if not os.path.exists(dirname): os.makedirs(dirname) ifno_mkdirs(output_path) # Function to read in FASTA file def read_fasta_file(file_path): with open(file_path, 'r') as fasta_file: sequence = [] for line in fasta_file: line = line.strip() if not line.startswith('>'): sequence.append(line) protein_sequence = ''.join(sequence) return protein_sequence # Check if the input is either a protein amino acid sequence or a FASTA file, but not both if (protein_seq is not None) != (fasta_file is not None): if fasta_file is not None: protein_seq = read_fasta_file(fasta_file) else: protein_seq = protein_seq else: print("The input should be either a protein amino acid sequence or a FASTA file, but not both.") # Load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained('liyuesen/druggpt') model = GPT2LMHeadModel.from_pretrained("liyuesen/druggpt") # Generate a prompt for the model p_prompt = "<|startoftext|>

" + protein_seq + "" l_prompt = "" + ligand_prompt prompt = p_prompt + l_prompt print(prompt) # Move the model to the specified device model.eval() device = torch.device(device) model.to(device) #Define post-processing function #Define function to generate SDF files from a list of ligand SMILES using OpenBabel def get_sdf(ligand_list,output_path): for ligand in tqdm(ligand_list): filename = output_path + 'ligand_' + ligand +'.sdf' cmd = "obabel -:" + ligand + " -osdf -O " + filename + " --gen3d --forcefield mmff94"# --conformer --nconf 1 --score rmsd #subprocess.check_call(cmd, shell=True) try: # 设置超时时间为 30 秒 output = subprocess.check_output(cmd, timeout=10) except subprocess.TimeoutExpired: pass #Define function to filter out empty SDF files def filter_sdf(output_path): filelist = os.listdir(output_path) for filename in filelist: filepath = os.path.join(output_path,filename) with open(filepath,'r') as f: text = f.read() if len(text)<2: os.remove(filepath) # Generate molecules generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0) generated = generated.to(device) for i in range(100): ligand_list = [] sample_outputs = model.generate( generated, #bos_token_id=random.randint(1,30000), do_sample=True, top_k=5, max_length = 1024, top_p=0.6, num_return_sequences=64 ) for i, sample_output in enumerate(sample_outputs): ligand_list.append(tokenizer.decode(sample_output, skip_special_tokens=True).split('')[1]) torch.cuda.empty_cache() get_sdf(ligand_list,output_path) filter_sdf(output_path) if len(os.listdir(output_path))>num_generated: break else:pass