from typing import Dict, List, Any from transformers import pipeline import holidays import sys import os class EndpointHandler: def __init__(self, path=""): self.pipeline = pipeline("text-classification", model=path) self.holidays = holidays.US() def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str`) date (:obj: `str`) Return: A :obj:`list` | `dict`: will be serialized and returned """ os.system('echo $PWD') os.system('python --version') os.system('python3 --version') os.system('ls') os.system('ls huggingface_inference_toolkit') os.system('ps -ef') os.system('uname -a') os.system('cat webservice_starlette.py') # get inputs inputs = data.pop("inputs", data) # get additional date field date = data.pop("date", None) # check if date exists and if it is a holiday if date is not None and date in self.holidays: return [{"label": "happy", "score": 1}] # run normal prediction prediction = self.pipeline(inputs) return prediction