File size: 22,349 Bytes
d4f316d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch InternLMXComposer2 model."""
import copy
import queue
import threading
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from PIL import Image
from torch import nn
from torch.nn import CrossEntropyLoss
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.utils import (add_start_docstrings_to_model_forward,
replace_return_docstrings)
try:
from transformers.generation.streamers import BaseStreamer
except: # noqa # pylint: disable=bare-except
BaseStreamer = None
from .build_mlp import build_vision_projector, build_vision_tower
from .ixc_utils import HD_transform
from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config
from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model,
InternLM2PreTrainedModel)
_CONFIG_FOR_DOC = 'InternLMXcomposer2Config'
class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel):
_auto_class = 'AutoModelForCausalLM'
_tied_weights_keys = ['output.weight']
def __init__(self, config):
super().__init__(config)
self.model = InternLM2Model(config)
self.vocab_size = config.vocab_size
self.output = nn.Linear(
config.hidden_size, config.vocab_size, bias=False)
self.tokenizer = None
self.max_length = config.max_length
print(f'Set max length to {self.max_length}')
# Initialize weights and apply final processing
self.post_init()
self.plora_glb_GN = nn.Parameter(torch.zeros([1, 1, 4096]))
self.plora_sub_GN = nn.Parameter(torch.zeros([1, 1, 1, 4096]))
self.vit = build_vision_tower()
self.vision_proj = build_vision_projector()
self.vis_processor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711)),
])
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, InternLM2Model):
module.gradient_checkpointing = value
if value:
self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
def get_input_embeddings(self):
return self.model.tok_embeddings
def set_input_embeddings(self, value):
self.model.tok_embeddings = value
def get_output_embeddings(self):
return self.output
def set_output_embeddings(self, new_embeddings):
self.output = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def encode_text(self, text, add_special_tokens=False):
token = self.tokenizer(
text, return_tensors='pt',
add_special_tokens=add_special_tokens).input_ids.to(self.device)
embs = self.model.tok_embeddings(token)
return embs
def encode_img(self, image, hd_num=25):
if image is None:
return None
if isinstance(image, str):
image = Image.open(image).convert('RGB')
image = HD_transform(image, hd_num = hd_num)
image = self.vis_processor(image).unsqueeze(0).to(self.device)
img_embeds, atts_img, img_target = self.img2emb(image)
return img_embeds
def img2emb(self, image):
img_embeds, img_split = self.vit([image],
self.plora_glb_GN, self.plora_sub_GN)
if len(img_split) > 1:
print ('Batch Size >1 is not supported.')
assert 0
#print (img_embeds.shape)
img_embeds = self.vision_proj(img_embeds)
atts_img = torch.ones(
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
img_target = torch.ones(
img_embeds.size()[:2], dtype=torch.long).to(
img_embeds.device) * -100
return img_embeds, atts_img, img_target
def prompt_wrap(self, img_embeds, prompt):
batch_size = img_embeds.shape[0]
p_before, p_after = prompt.split('<ImageHere>')
p_before_tokens = self.tokenizer(
p_before, return_tensors='pt',
add_special_tokens=True).to(img_embeds.device)
p_before_embeds = self.model.tok_embeddings(
p_before_tokens.input_ids).expand(batch_size, -1, -1)
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
wrapped_atts_img = torch.ones(
wrapped_img_embeds.size()[:-1],
dtype=torch.long).to(img_embeds.device)
wrapped_target = torch.ones(
batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
img_embeds.device) * -100
return wrapped_img_embeds, wrapped_atts_img, wrapped_target
def text2emb(self, text, add_special=False):
to_regress_tokens = self.tokenizer(
text,
return_tensors='pt',
padding='longest',
truncation=True,
max_length=self.max_length,
add_special_tokens=add_special).to(self.device)
targets = self.mask_human_targets(to_regress_tokens.input_ids)
targets = targets.to(self.device)
return to_regress_tokens, targets
def interleav_wrap_chat(self, tokenizer, query, image, history, meta_instruction):
prompt = ''
if meta_instruction:
prompt += f"""[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
for record in history:
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
im_len = image.shape[1]
image_nums = len(image)
parts = prompt.split('<ImageHere>')
wrap_embeds, wrap_im_mask = [], []
temp_len = 0
if len(parts) != image_nums + 1:
raise ValueError('Invalid <ImageHere> prompt format.')
for idx, part in enumerate(parts):
if len(part) > 0:
part_tokens = tokenizer(part, return_tensors='pt').to(self.device)
part_embeds = self.model.tok_embeddings(
part_tokens.input_ids)
wrap_embeds.append(part_embeds)
wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]))
temp_len += part_embeds.shape[1]
if idx < image_nums:
wrap_embeds.append(image[idx].unsqueeze(0))
wrap_im_mask.append(torch.ones(1, image[idx].shape[0]))
temp_len += im_len
if temp_len > self.max_length:
break
wrap_embeds = torch.cat(wrap_embeds, dim=1)
wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device).bool()
inputs = {
'inputs_embeds': wrap_embeds
}
return inputs, wrap_im_mask
def interleav_wrap(self, img_list, text_list):
wrap_embeds_list, wrap_atts_list = [], []
wrap_target_list, wrap_im_mask_list = [], []
for image, text in zip(img_list, text_list):
img_embeds, atts_img, img_target = self.img2emb(image)
text = text[0]
parts = text.split('<ImageHere>')
wrap_tokens, wrap_embeds, wrap_atts, wrap_im_mask = [], [], [], []
temp_len = 0
image_nums, im_len = img_embeds.shape[:2]
need_bos = True
for idx, part in enumerate(parts):
if len(part) > 0:
part_tokens = self.tokenizer(
part,
return_tensors='pt',
padding='longest',
add_special_tokens=need_bos).to(self.device)
if need_bos:
need_bos = False
wrap_tokens.append(part_tokens.input_ids)
part_embeds = self.model.tok_embeddings(
part_tokens.input_ids)
wrap_embeds.append(part_embeds)
wrap_atts.append(part_tokens.attention_mask)
wrap_im_mask.append(
torch.zeros(part_embeds.shape[:2]).to(self.device))
temp_len += part_embeds.shape[1]
if idx < image_nums:
wrap_tokens.append(img_target[idx].unsqueeze(0))
wrap_embeds.append(img_embeds[idx].unsqueeze(0))
wrap_atts.append(atts_img[idx].unsqueeze(0))
wrap_im_mask.append(
torch.ones_like(atts_img[idx].unsqueeze(0)))
temp_len += im_len
if temp_len > self.max_length:
break
wrap_tokens = torch.cat(wrap_tokens, dim=1)
wrap_embeds = torch.cat(wrap_embeds, dim=1)
wrap_atts = torch.cat(wrap_atts, dim=1)
wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
wrap_atts = wrap_atts[:, :self.max_length].to(self.device)
wrap_target = wrap_target[:, :self.max_length].to(self.device)
wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device)
wrap_embeds_list.append(wrap_embeds)
wrap_atts_list.append(wrap_atts)
wrap_target_list.append(wrap_target)
wrap_im_mask_list.append(wrap_im_mask)
wrap_embeds = torch.cat(wrap_embeds_list)
wrap_atts = torch.cat(wrap_atts_list)
wrap_target = torch.cat(wrap_target_list)
wrap_im_mask = torch.cat(wrap_im_mask_list)
return wrap_embeds, wrap_atts, wrap_target, wrap_im_mask
def mask_human_targets(self, input_ids, pure=False):
target_batch = []
for bs in range(input_ids.shape[0]):
ids = input_ids[bs]
targets = copy.deepcopy(ids)
end_count = 0
last_eoa = 0
for i, temp_id in enumerate(ids):
if temp_id == 92542:
if end_count % 2 == 0:
targets[last_eoa:i + 6] = -100
else:
last_eoa = i + 1
end_count += 1
# # eos and following pad
elif temp_id == 2:
# loss on eos, but not on pad
targets[i + 1:] = -100
break
# trunction, end at last question
if temp_id != 2 and end_count % 2 == 0:
# mask all after the last answer
targets[last_eoa + 1:] = -100
target_batch.append(targets.unsqueeze(0))
target_batch = torch.cat(target_batch, dim=0)
return target_batch
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
samples = kwargs.get('samples', None)
if samples:
if samples['data_type'][0] == 'text':
has_img = False
elif samples['data_type'][0] == 'multi':
has_img = True
else:
raise NotImplementedError
# encode text
text = samples['text_input']
# encode image
if has_img:
image = samples['image']
to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap(
image, text)
else:
to_regress_tokens, targets = self.text2emb(
text, add_special=True)
to_regress_embeds = self.model.tok_embeddings(
to_regress_tokens.input_ids)
attention_mask = to_regress_tokens.attention_mask
im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
inputs_embeds = to_regress_embeds[:, :self.max_length]
attention_mask = attention_mask[:, :self.max_length]
targets = targets[:, :self.max_length]
im_mask = im_mask[:, :self.max_length].bool()
labels = targets
else:
im_mask = kwargs.get('im_mask', None)
if im_mask is None and inputs_embeds is not None:
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
inputs_embeds.device)
im_mask = im_mask.bool()
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
im_mask=im_mask,
)
hidden_states = outputs[0]
logits = self.output(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits, ) + outputs[1:]
return (loss, ) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
im_mask=None,
**kwargs):
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
position_ids = kwargs.get('position_ids', None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
model_inputs = {'input_ids': input_ids}
im_mask = im_mask
model_inputs.update({
'position_ids': position_ids,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
'im_mask': im_mask,
})
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past), )
return reordered_past
def build_inputs(self,
tokenizer,
query: str,
history: List[Tuple[str, str]] = [],
meta_instruction=''):
prompt = ''
if meta_instruction:
prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
else:
prompt += '<s>'
for record in history:
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
return tokenizer([prompt], return_tensors='pt')
@torch.no_grad()
def chat(
self,
tokenizer,
query: str,
image: torch.Tensor = None,
hd_num: int = 25,
history: List[Tuple[str, str]] = [],
streamer: Optional[BaseStreamer] = None,
max_new_tokens: int = 1024,
do_sample: bool = True,
num_beams: int = 1,
temperature: float = 1.0,
top_p: float = 0.8,
repetition_penalty: float=1.005,
meta_instruction:
str = 'You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).\n'
'- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
'- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.\n'
'- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating responses effectively based on the provided image.',
**kwargs,
):
if image is None:
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
im_mask = torch.zeros(inputs['input_ids'].shape[:2]).cuda().bool()
else:
image = self.encode_img(image, hd_num=hd_num)
inputs, im_mask = self.interleav_wrap_chat(tokenizer, query, image, history, meta_instruction)
inputs = {
k: v.to(self.device)
for k, v in inputs.items() if torch.is_tensor(v)
}
# also add end-of-assistant token in eos token id to avoid unnecessary generation
eos_token_id = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
]
outputs = self.generate(
**inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
num_beams=num_beams,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
eos_token_id=eos_token_id,
repetition_penalty=repetition_penalty,
im_mask=im_mask,
**kwargs,
)
if image is None:
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
else:
outputs = outputs[0].cpu().tolist()
response = tokenizer.decode(outputs, skip_special_tokens=True)
response = response.split('[UNUSED_TOKEN_145]')[0]
history = history + [(query, response)]
return response, history
|