RaushanTurganbay HF staff commited on
Commit
4ff260d
1 Parent(s): 8ee6481

Add chat template examples

Browse files
Files changed (1) hide show
  1. README.md +34 -6
README.md CHANGED
@@ -6,6 +6,10 @@ datasets:
6
  pipeline_tag: image-to-text
7
  inference: false
8
  arxiv: 2304.08485
 
 
 
 
9
  ---
10
  # BakLLaVA Model Card
11
 
@@ -42,10 +46,23 @@ import requests
42
 
43
  model_id = "llava-hf/bakLlava-v1-hf"
44
  pipe = pipeline("image-to-text", model=model_id)
45
- url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
46
 
 
47
  image = Image.open(requests.get(url, stream=True).raw)
48
- prompt = "USER: <image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
51
  print(outputs)
@@ -64,10 +81,6 @@ import torch
64
  from transformers import AutoProcessor, LlavaForConditionalGeneration
65
 
66
  model_id = "llava-hf/bakLlava-v1-hf"
67
-
68
- prompt = "USER: <image>\nWhat are these?\nASSISTANT:"
69
- image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
70
-
71
  model = LlavaForConditionalGeneration.from_pretrained(
72
  model_id,
73
  torch_dtype=torch.float16,
@@ -76,6 +89,21 @@ model = LlavaForConditionalGeneration.from_pretrained(
76
 
77
  processor = AutoProcessor.from_pretrained(model_id)
78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  raw_image = Image.open(requests.get(image_file, stream=True).raw)
80
  inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
81
 
 
6
  pipeline_tag: image-to-text
7
  inference: false
8
  arxiv: 2304.08485
9
+ license: llama2
10
+ tags:
11
+ - vision
12
+ - image-text-to-text
13
  ---
14
  # BakLLaVA Model Card
15
 
 
46
 
47
  model_id = "llava-hf/bakLlava-v1-hf"
48
  pipe = pipeline("image-to-text", model=model_id)
 
49
 
50
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
51
  image = Image.open(requests.get(url, stream=True).raw)
52
+
53
+ # Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
54
+ # Each value in "content" has to be a list of dicts with types ("text", "image")
55
+ conversation = [
56
+ {
57
+
58
+ "role": "user",
59
+ "content": [
60
+ {"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
61
+ {"type": "image"},
62
+ ],
63
+ },
64
+ ]
65
+ prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
66
 
67
  outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
68
  print(outputs)
 
81
  from transformers import AutoProcessor, LlavaForConditionalGeneration
82
 
83
  model_id = "llava-hf/bakLlava-v1-hf"
 
 
 
 
84
  model = LlavaForConditionalGeneration.from_pretrained(
85
  model_id,
86
  torch_dtype=torch.float16,
 
89
 
90
  processor = AutoProcessor.from_pretrained(model_id)
91
 
92
+ # Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
93
+ # Each value in "content" has to be a list of dicts with types ("text", "image")
94
+ conversation = [
95
+ {
96
+
97
+ "role": "user",
98
+ "content": [
99
+ {"type": "text", "text": "What are these?"},
100
+ {"type": "image"},
101
+ ],
102
+ },
103
+ ]
104
+ prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
105
+
106
+ image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
107
  raw_image = Image.open(requests.get(image_file, stream=True).raw)
108
  inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
109