RaushanTurganbay HF staff commited on
Commit
de2d7ca
1 Parent(s): f6de0a1
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -39,17 +39,18 @@ The model supports multi-image and multi-prompt generation. Meaning that you can
39
  Below we used [`"llava-hf/llava-interleave-qwen-0.5b-hf"`](https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf) checkpoint.
40
 
41
  ```python
42
- from transformers import pipeline
43
  from PIL import Image
44
  import requests
45
 
46
  model_id = "llava-hf/llava-interleave-qwen-7b-dpo-hf"
47
  pipe = pipeline("image-to-text", model=model_id)
 
48
 
49
  url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
50
  image = Image.open(requests.get(url, stream=True).raw)
51
 
52
- # Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
53
  # Each value in "content" has to be a list of dicts with types ("text", "image")
54
  conversation = [
55
  {
@@ -87,7 +88,7 @@ model = LlavaForConditionalGeneration.from_pretrained(
87
 
88
  processor = AutoProcessor.from_pretrained(model_id)
89
 
90
- # Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
91
  # Each value in "content" has to be a list of dicts with types ("text", "image")
92
  conversation = [
93
  {
 
39
  Below we used [`"llava-hf/llava-interleave-qwen-0.5b-hf"`](https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf) checkpoint.
40
 
41
  ```python
42
+ from transformers import pipeline, AutoProcessor
43
  from PIL import Image
44
  import requests
45
 
46
  model_id = "llava-hf/llava-interleave-qwen-7b-dpo-hf"
47
  pipe = pipeline("image-to-text", model=model_id)
48
+ processor = AutoProcessor.from_pretrained(model_id)
49
 
50
  url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
51
  image = Image.open(requests.get(url, stream=True).raw)
52
 
53
+ # Define a chat history and use `apply_chat_template` to get correctly formatted prompt
54
  # Each value in "content" has to be a list of dicts with types ("text", "image")
55
  conversation = [
56
  {
 
88
 
89
  processor = AutoProcessor.from_pretrained(model_id)
90
 
91
+ # Define a chat history and use `apply_chat_template` to get correctly formatted prompt
92
  # Each value in "content" has to be a list of dicts with types ("text", "image")
93
  conversation = [
94
  {