lleticiasilvaa commited on
Commit
22feb0b
1 Parent(s): 6c770b5

End of training

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
3
+ library_name: peft
4
+ license: apache-2.0
5
+ tags:
6
+ - trl
7
+ - sft
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: TinyLlama-1.1B-Chat-SchemaLinking-v1
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # TinyLlama-1.1B-Chat-SchemaLinking-v1
18
+
19
+ This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0697
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0001
41
+ - train_batch_size: 1
42
+ - eval_batch_size: 1
43
+ - seed: 14
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 8
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_ratio: 0.03
49
+ - num_epochs: 5
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss |
55
+ |:-------------:|:------:|:----:|:---------------:|
56
+ | 0.3573 | 0.2334 | 250 | 0.1872 |
57
+ | 0.1155 | 0.4668 | 500 | 0.1122 |
58
+ | 0.079 | 0.7002 | 750 | 0.0828 |
59
+ | 0.0672 | 0.9336 | 1000 | 0.0741 |
60
+ | 0.0555 | 1.1670 | 1250 | 0.0720 |
61
+ | 0.055 | 1.4004 | 1500 | 0.0701 |
62
+ | 0.053 | 1.6338 | 1750 | 0.0681 |
63
+ | 0.0526 | 1.8672 | 2000 | 0.0664 |
64
+ | 0.047 | 2.1006 | 2250 | 0.0647 |
65
+ | 0.0406 | 2.3340 | 2500 | 0.0646 |
66
+ | 0.0411 | 2.5674 | 2750 | 0.0620 |
67
+ | 0.0352 | 2.8010 | 3000 | 0.0660 |
68
+ | 0.0337 | 3.0344 | 3250 | 0.0646 |
69
+ | 0.0326 | 3.2678 | 3500 | 0.0633 |
70
+ | 0.0323 | 3.5012 | 3750 | 0.0625 |
71
+ | 0.0321 | 3.7346 | 4000 | 0.0614 |
72
+ | 0.0317 | 3.9680 | 4250 | 0.0616 |
73
+ | 0.0271 | 4.2014 | 4500 | 0.0676 |
74
+ | 0.0258 | 4.4348 | 4750 | 0.0688 |
75
+ | 0.0257 | 4.6682 | 5000 | 0.0678 |
76
+ | 0.0227 | 4.9019 | 5250 | 0.0697 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - PEFT 0.13.2
82
+ - Transformers 4.45.2
83
+ - Pytorch 2.4.1+cu121
84
+ - Datasets 3.0.1
85
+ - Tokenizers 0.20.1