File size: 6,698 Bytes
4783804 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import re
import time
import random
import io
from pathlib import Path
import json
import torch
import requests
from safetensors.torch import save_file
from exllamav2 import(
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Tokenizer,
)
from exllamav2.generator import (
ExLlamaV2BaseGenerator,
ExLlamaV2Sampler
)
from exl2_wrapper import ExLlamaV2ModuleWrapper
### START Settings
template = '<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful AI assistant.<|eot_id|>\n<|start_header_id|>user<|end_header_id|>\n\n{instruction}<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>\n\n'
model_dir = '/path/to/Meta-Llama-3-8B-Instruct'
harmful_prompts_url = 'ADD_URL_HERE'
harmless_prompts_url = 'https://raw.githubusercontent.com/tatsu-lab/stanford_alpaca/main/alpaca_data.json'
### END Settings
torch.cuda._lazy_init()
torch.set_printoptions(precision = 5, sci_mode = False, linewidth = 150)
config = ExLlamaV2Config()
config.model_dir = model_dir
config.prepare()
config.max_seq_len = 2048
model = ExLlamaV2(config)
ExLlamaV2ModuleWrapper.wrap(model, False)
model._residual = [] # Enable residual capture
out_dir = Path(config.model_dir.replace('/', '_'))
out_dir.mkdir(exist_ok = True)
harmful_prompts_file = out_dir / Path('harmful_prompts.json')
harmless_prompts_file = out_dir / Path('harmless_prompts.json')
refused_residual_file = out_dir / Path('refused_residual.pth')
allowed_residual_file = out_dir / Path('allowed_residual.pth')
allowed_residual_mean_file = out_dir / Path('allowed_residual_mean.pth')
suppress_dir_file = out_dir / Path('suppress_dir.safetensors')
refused = []
def get_residual(prompts, num_tokens, silent, max_capture, capture_type):
global model, tokenizer, settings, refused, generator
refused = []
residuals = []
print(f'Processing {len(prompts)} prompts')
for idx, prompt in enumerate(prompts):
if idx and not (idx % 100):
print('', len(residuals))
prompt = template.format(instruction = prompt)
model._residual = []
out = generator.generate_simple(prompt, settings, num_tokens, completion_only = True)
refusal = re.match(r'^(I\'m not|I cannot|I can\'t|I\'m sorry|As an A|I apolog|I\'m (unable|really|here)|[1I], as|I must|I understand|It(\'s| is) important|Sorry|The (assistant|AI))', out)
if capture_type is None or (capture_type == 'refused' and refusal) or (capture_type == 'allowed' and not refusal):
residuals.append(model._residual[:])
if refusal:
refused.append(prompt)
print('-' if refusal else '+', end='', flush = True)
if max_capture and len(residuals) >= max_capture:
print('\nMax capture reached')
break
if not silent:
print(out)
if not len(residuals):
return None
print(f'\nCaptured {len(residuals)} residual streams')
res = []
for l in range(len(residuals[0])):
res.append(torch.cat([t[l][0, -1, :].unsqueeze(0) for t in residuals], dim=0))
return res
if not harmful_prompts_file.exists():
print('Downloading harmful prompts')
res = requests.get(harmful_prompts_url)
harmful_prompts = []
for line in res.iter_lines():
if line:
harmful_prompts.append(json.loads(line.decode())['prompt'])
with harmful_prompts_file.open('w') as f:
json.dump(harmful_prompts, f)
print('Done')
else:
with harmful_prompts_file.open('r') as f:
harmful_prompts = json.load(f)
print(" -- Loading model...")
t = time.time()
cache = ExLlamaV2Cache(model, lazy=True)
model.load_autosplit(cache)
t = time.time() - t
print(f" -- Loaded model in {t:.4f} seconds")
print(" -- Loading tokenizer...")
tokenizer = ExLlamaV2Tokenizer(config)
settings = ExLlamaV2Sampler.Settings()
settings.temperature = 0
generator = ExLlamaV2BaseGenerator(model, cache, tokenizer)
with torch.inference_mode():
if not refused_residual_file.exists():
print('Building refused residual data')
refused_residual = get_residual(harmful_prompts, 4, True, 2000, 'refused')
torch.save(refused_residual, refused_residual_file)
else:
print('Loading refusal residual data')
refused_residual = torch.load(refused_residual_file)
print('Done')
allowed_residual_mean = []
if not allowed_residual_mean_file.exists():
if not allowed_residual_file.exists():
print('Building allowed residual data')
if not harmless_prompts_file.exists():
print('Downloading harmless prompts')
res = requests.get(harmless_prompts_url)
all_prompts = json.loads(res.content.decode('utf8'))
harmless_prompts = [i['instruction'] for i in all_prompts if i['input'] == '']
with harmless_prompts_file.open('w') as f:
json.dump(harmless_prompts, f)
print('Done')
else:
with harmless_prompts_file.open('r') as f:
harmless_prompts = json.load(f)
allowed_residual = get_residual(harmless_prompts, 4, True, 2000, 'allowed')
torch.save(allowed_residual, allowed_residual_file)
else:
print('Loading allowed residual data')
allowed_residual = torch.load(allowed_residual_file)
print('Done')
print('Calculating mean allowed residual')
for i in range(len(allowed_residual)):
allowed_residual_mean.append(allowed_residual[i].mean(dim = 0))
print('Done')
torch.save(allowed_residual_mean, allowed_residual_mean_file)
else:
allowed_residual_mean = torch.load(allowed_residual_mean_file)
if model._suppress_dir is None:
model._suppress_dir = []
for o in range(6):
print('Iteration', o)
for i in range(len(refused_residual)):
refusal_dir = refused_residual[i].mean(dim = 0) - allowed_residual_mean[i]
refusal_dir = refusal_dir / refusal_dir.norm() if refusal_dir.norm() > 0.0001 else torch.zeros_like(refusal_dir)
if len(model._suppress_dir) > i:
model._suppress_dir[i] = (model._suppress_dir[i] + refusal_dir) / 2
else:
model._suppress_dir.append(refusal_dir)
refused_residual = get_residual(random.sample(harmful_prompts, 2000), 4, True, 50, 'refused')
if not refused_residual or refused_residual[0].shape[0] < 30:
break
save_file({f'_suppress_dir_{layer}': tensor for layer, tensor in enumerate(model._suppress_dir)}, suppress_dir_file)
torch.cuda.synchronize()
|