File size: 6,698 Bytes
4783804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import re
import time
import random
import io
from pathlib import Path
import json
import torch
import requests
from safetensors.torch import save_file

from exllamav2 import(
    ExLlamaV2,
    ExLlamaV2Config,
    ExLlamaV2Cache,
    ExLlamaV2Tokenizer,
)

from exllamav2.generator import (
    ExLlamaV2BaseGenerator,
    ExLlamaV2Sampler
)

from exl2_wrapper import ExLlamaV2ModuleWrapper

### START Settings

template = '<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful AI assistant.<|eot_id|>\n<|start_header_id|>user<|end_header_id|>\n\n{instruction}<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>\n\n'

model_dir = '/path/to/Meta-Llama-3-8B-Instruct'

harmful_prompts_url = 'ADD_URL_HERE'
harmless_prompts_url = 'https://raw.githubusercontent.com/tatsu-lab/stanford_alpaca/main/alpaca_data.json'

### END Settings

torch.cuda._lazy_init()
torch.set_printoptions(precision = 5, sci_mode = False, linewidth = 150)

config = ExLlamaV2Config()
config.model_dir = model_dir
config.prepare()
config.max_seq_len = 2048
model = ExLlamaV2(config)
ExLlamaV2ModuleWrapper.wrap(model, False)
model._residual = [] # Enable residual capture


out_dir = Path(config.model_dir.replace('/', '_'))
out_dir.mkdir(exist_ok = True)

harmful_prompts_file = out_dir / Path('harmful_prompts.json')
harmless_prompts_file = out_dir / Path('harmless_prompts.json')

refused_residual_file = out_dir / Path('refused_residual.pth')
allowed_residual_file = out_dir / Path('allowed_residual.pth')
allowed_residual_mean_file = out_dir / Path('allowed_residual_mean.pth')

suppress_dir_file = out_dir / Path('suppress_dir.safetensors')

refused = []
def get_residual(prompts, num_tokens, silent, max_capture, capture_type):
    global model, tokenizer, settings, refused, generator

    refused = []
    residuals = []

    print(f'Processing {len(prompts)} prompts')
    for idx, prompt in enumerate(prompts):
        if idx and not (idx % 100):
            print('', len(residuals))

        prompt = template.format(instruction = prompt)

        model._residual = []
        out = generator.generate_simple(prompt, settings, num_tokens, completion_only = True)

        refusal = re.match(r'^(I\'m not|I cannot|I can\'t|I\'m sorry|As an A|I apolog|I\'m (unable|really|here)|[1I], as|I must|I understand|It(\'s| is) important|Sorry|The (assistant|AI))', out)
        if capture_type is None or (capture_type == 'refused' and refusal) or (capture_type == 'allowed' and not refusal):
            residuals.append(model._residual[:])

        if refusal:
            refused.append(prompt)
        print('-' if refusal else '+', end='', flush = True)

        if max_capture and len(residuals) >= max_capture:
            print('\nMax capture reached')
            break

        if not silent:
            print(out)

    if not len(residuals):
        return None

    print(f'\nCaptured {len(residuals)} residual streams')

    res = []
    for l in range(len(residuals[0])):
        res.append(torch.cat([t[l][0, -1, :].unsqueeze(0) for t in residuals], dim=0))
    return res

if not harmful_prompts_file.exists():
    print('Downloading harmful prompts')
    res = requests.get(harmful_prompts_url)

    harmful_prompts = []
    for line in res.iter_lines():
        if line:
            harmful_prompts.append(json.loads(line.decode())['prompt'])
    with harmful_prompts_file.open('w') as f:
        json.dump(harmful_prompts, f)
    print('Done')
else:
    with harmful_prompts_file.open('r') as f:
        harmful_prompts = json.load(f)

print(" -- Loading model...")
t = time.time()
cache = ExLlamaV2Cache(model, lazy=True)
model.load_autosplit(cache)
t = time.time() - t
print(f" -- Loaded model in {t:.4f} seconds")

print(" -- Loading tokenizer...")
tokenizer = ExLlamaV2Tokenizer(config)
settings = ExLlamaV2Sampler.Settings()
settings.temperature = 0

generator = ExLlamaV2BaseGenerator(model, cache, tokenizer)

with torch.inference_mode():

    if not refused_residual_file.exists():
        print('Building refused residual data')
        refused_residual = get_residual(harmful_prompts, 4, True, 2000, 'refused')
        torch.save(refused_residual, refused_residual_file)
    else:
        print('Loading refusal residual data')
        refused_residual = torch.load(refused_residual_file)
    print('Done')
    
    allowed_residual_mean = []
    if not allowed_residual_mean_file.exists():
        if not allowed_residual_file.exists():
            print('Building allowed residual data')
            if not harmless_prompts_file.exists():
                print('Downloading harmless prompts')
                res = requests.get(harmless_prompts_url)

                all_prompts = json.loads(res.content.decode('utf8'))
                harmless_prompts = [i['instruction'] for i in all_prompts if i['input'] == '']

                with harmless_prompts_file.open('w') as f:
                    json.dump(harmless_prompts, f)
                print('Done')
            else:
                with harmless_prompts_file.open('r') as f:
                    harmless_prompts = json.load(f)
            allowed_residual = get_residual(harmless_prompts, 4, True, 2000, 'allowed')
            torch.save(allowed_residual, allowed_residual_file)
        else:
            print('Loading allowed residual data')
            allowed_residual = torch.load(allowed_residual_file)
    
        print('Done')

        print('Calculating mean allowed residual')
        for i in range(len(allowed_residual)):
            allowed_residual_mean.append(allowed_residual[i].mean(dim = 0))
        print('Done')
        torch.save(allowed_residual_mean, allowed_residual_mean_file)
    else:
        allowed_residual_mean = torch.load(allowed_residual_mean_file)

    if model._suppress_dir is None:
        model._suppress_dir = []

    for o in range(6):
        print('Iteration', o)

        for i in range(len(refused_residual)):
            refusal_dir = refused_residual[i].mean(dim = 0) - allowed_residual_mean[i]
            refusal_dir = refusal_dir / refusal_dir.norm() if refusal_dir.norm() > 0.0001 else torch.zeros_like(refusal_dir)
            if len(model._suppress_dir) > i:
                model._suppress_dir[i] = (model._suppress_dir[i] + refusal_dir) / 2
            else:
                model._suppress_dir.append(refusal_dir)

        refused_residual = get_residual(random.sample(harmful_prompts, 2000), 4, True, 50, 'refused')

        if not refused_residual or refused_residual[0].shape[0] < 30:
            break


    save_file({f'_suppress_dir_{layer}': tensor for layer, tensor in enumerate(model._suppress_dir)}, suppress_dir_file)

    torch.cuda.synchronize()