ZoRA-Refusal-Suppression / test_inference.py
llmixer's picture
Added generator code
4783804 verified
from exllamav2 import(
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Cache_8bit,
ExLlamaV2Cache_Q4,
ExLlamaV2Tokenizer,
model_init,
)
from exllamav2.generator import (
ExLlamaV2BaseGenerator,
ExLlamaV2Sampler
)
from exllamav2.attn import ExLlamaV2Attention
from exllamav2.mlp import ExLlamaV2MLP
from exllamav2.moe_mlp import ExLlamaV2MoEMLP
from exllamav2.parallel_decoder import ExLlamaV2ParallelDecoder
import argparse, os, math, time
import torch
import torch.nn.functional as F
from conversion.tokenize import get_tokens
from conversion.quantize import list_live_tensors
import gc
# from exllamav2.mlp import set_catch
import sys
import json
torch.cuda._lazy_init()
torch.set_printoptions(precision = 5, sci_mode = False, linewidth = 150)
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
# torch.set_float32_matmul_precision("medium")
# (!!!) NOTE: These go on top of the engine arguments that can be found in `model_init.py` (!!!)
parser = argparse.ArgumentParser(description = "Test inference on ExLlamaV2 model")
parser.add_argument("-ed", "--eval_dataset", type = str, help = "Perplexity evaluation dataset (.parquet file)")
parser.add_argument("-er", "--eval_rows", type = int, default = 128, help = "Number of rows to apply from dataset")
parser.add_argument("-el", "--eval_length", type = int, default = 2048, help = "Max no. tokens per sample")
parser.add_argument("-et", "--eval_token", action = "store_true", help = "Evaluate perplexity on token-by-token inference using cache")
parser.add_argument("-e8", "--eval_token_8bit", action = "store_true", help = "Evaluate perplexity on token-by-token inference using 8-bit (FP8) cache")
parser.add_argument("-eq4", "--eval_token_q4", action = "store_true", help = "Evaluate perplexity on token-by-token inference using Q4 cache")
# parser.add_argument("-eb", "--eval_bos", action = "store_true", help = "Add BOS token to every row in perplexity test (required by Gemma and maybe other models.)")
parser.add_argument("-p", "--prompt", type = str, help = "Generate from prompt (basic sampling settings)")
parser.add_argument("-pnb", "--prompt_no_bos", action = "store_true", help = "Don't add BOS token to prompt")
parser.add_argument("-t", "--tokens", type = int, default = 128, help = "Max no. tokens")
parser.add_argument("-ps", "--prompt_speed", action = "store_true", help = "Test prompt processing (batch) speed over context length")
parser.add_argument("-s", "--speed", action = "store_true", help = "Test raw generation speed over context length")
parser.add_argument("-mix", "--mix_layers", type = str, help = "Load replacement layers from secondary model. Example: --mix_layers 1,6-7:/mnt/models/other_model")
parser.add_argument("-nwu", "--no_warmup", action = "store_true", help = "Skip warmup before testing model")
parser.add_argument("-sl", "--stream_layers", action = "store_true", help = "Load model layer by layer (perplexity evaluation only)")
parser.add_argument("-sp", "--standard_perplexity", choices = ["wiki2"], help = "Run standard (HF) perplexity test, stride 512 (experimental)")
parser.add_argument("-rr", "--rank_reduce", type = str, help = "Rank-reduction for MLP layers of model, in reverse order (for experimentation)")
parser.add_argument("-mol", "--max_output_len", type = int, help = "Set max output chunk size (incompatible with ppl tests)")
# Initialize model and tokenizer
model_init.add_args(parser)
args = parser.parse_args()
# Check conflicting settings
if args.stream_layers:
if args.eval_token or args.eval_token_8bit or args.eval_token_q4:
print(" ## Can't test token ppl while streaming layers")
sys.exit()
if args.prompt:
print(" ## Can't generate while streaming layers")
sys.exit()
if args.speed or args.prompt_speed:
print(" ## Can't test speed while streaming layers")
sys.exit()
if args.gpu_split:
print(" ## Can only use one GPU when streaming layers")
sys.exit()
if args.eval_dataset:
if args.length and args.eval_length != args.length:
print(" !! Overriding model context length to match eval row length")
args.length = args.eval_length
# Init
model_init.check_args(args)
model_init.print_options(args)
model, tokenizer = model_init.init(args,
allow_auto_split = True,
skip_load = args.stream_layers,
benchmark = True,
max_output_len = args.max_output_len)
cache = None
from exl2_wrapper import ExLlamaV2ModuleWrapper
ExLlamaV2ModuleWrapper.wrap(model)
# Auto split
if not model.loaded and not args.stream_layers:
if args.mix_layers:
print(" !! Warning, auto split does not account for VRAM requirement of replacement layers")
print(" -- Loading model...")
cache = ExLlamaV2Cache(model, lazy = True)
t = time.time()
model.load_autosplit(cache)
t = time.time() - t
print(f" -- Loaded model in {t:.4f} seconds")
if args.stream_layers:
stream_batch_size = 2
model.config.max_batch_size = stream_batch_size
model.load(lazy = True)
# Rank reduction
if args.rank_reduce:
if args.stream_layers:
print(" ## --rank_reduce can not be combined with --stream_layers")
sys.exit()
rr = args.rank_reduce.split(",")
idx = len(model.modules) - 1
for r in rr:
k = float(r)
while True:
idx -= 1
module = model.modules[idx]
if isinstance(module, ExLlamaV2ParallelDecoder): break
if isinstance(module, ExLlamaV2MLP): break
if isinstance(module, ExLlamaV2MoEMLP): break
if idx < 0:
print(" ## Not enough layers")
sys.exit()
print(f" -- Reducing {module.key} ({module.name}) to {k * 100:.2f}%")
module.rank_reduce(k)
# Replacement
if args.mix_layers:
intervals_, extra_dir = args.mix_layers.split(":")
print(f" -- Loading replacement layers from: {extra_dir}")
extra_config = ExLlamaV2Config()
extra_config.model_dir = extra_dir
extra_config.prepare()
intervals = intervals_.split(",")
for interval in intervals:
ab = interval.split("-")
a, b = int(ab[0]), int(ab[-1])
for idx in range(a, b + 1):
print(f" -- Layer {idx}...")
layerkey = "model.layers." + str(idx) + "."
remove = [k for k in model.config.tensor_file_map.keys() if k.startswith(layerkey)]
replace = [k for k in extra_config.tensor_file_map.keys() if k.startswith(layerkey)]
# reload = [k for k in model.modules_dict.keys() if k.startswith(layerkey)]
for k in remove: del model.config.tensor_file_map[k]
for k in replace: model.config.tensor_file_map[k] = extra_config.tensor_file_map[k]
# for k in reload:
# model.modules_dict[k].unload()
# model.modules_dict[k].load()
if not args.stream_layers:
model.modules[idx * 2 + 1].reload()
model.modules[idx * 2 + 2].reload()
# Test generation
if args.prompt:
with torch.inference_mode():
if cache is None:
cache = ExLlamaV2Cache(model)
ids = tokenizer.encode(args.prompt)
tokens_prompt = ids.shape[-1]
print(f" -- Warmup...")
generator = ExLlamaV2BaseGenerator(model, cache, tokenizer)
if not args.no_warmup: generator.warmup()
print(f" -- Generating...")
print()
settings = ExLlamaV2Sampler.Settings()
settings.temperature = 0.75
settings.top_k = 100
settings.top_p = 0.75
settings.token_repetition_penalty = 1.05
settings.disallow_tokens(tokenizer, [tokenizer.eos_token_id])
time_begin = time.time()
output = generator.generate_simple(args.prompt, settings, args.tokens, token_healing = True, add_bos = not args.prompt_no_bos)
torch.cuda.synchronize()
time_prompt = time.time()
time_end = time.time()
print(output)
print()
total_gen = time_end - time_begin
print(f" -- Response generated in {total_gen:.2f} seconds, {args.tokens} tokens, {args.tokens / total_gen:.2f} tokens/second (includes prompt eval.)")
# Test perplexity
if args.eval_dataset or args.standard_perplexity:
with torch.inference_mode():
print(f" -- Running perplexity test")
if args.standard_perplexity:
eval_length = args.eval_length
if args.eval_dataset:
print(f" !! Note, overriding specified --eval_dataset with {args.standard_perplexity}")
from datasets import load_dataset
if args.standard_perplexity == "wiki2":
ds = "wikitext"
part = "wikitext-2-raw-v1"
split = "test"
# if args.standard_perplexity == "c4":
# ds = "allenai/c4"
# part = "allenai--c4"
# split = "train"
print(f" -- Loading dataset {ds}, {part}, {split}...")
test = load_dataset(ds, part, split = split)
print(f" -- Tokenizing samples...")
text = "\n\n".join(test["text"])
eval_tokens = tokenizer.encode(text)
stride = 512
seqs = []
eval_len = []
a = 0
while True:
b = a + model.config.max_seq_len
if b > eval_tokens.shape[-1]: break
seqs.append(eval_tokens[:, a:b])
eval_len.append(b if a == 0 else stride)
a += stride
eval_tokens = torch.cat(seqs, dim = 0)
else:
eval_dataset = args.eval_dataset
eval_rows = args.eval_rows
eval_length = args.eval_length
print(f" -- Dataset: {eval_dataset}")
print(f" -- Tokenizing eval data, {eval_rows} rows x {eval_length} tokens...")
eval_tokens = get_tokens(eval_rows, eval_length, eval_dataset, tokenizer)
eval_len = [eval_tokens.shape[1]] * eval_tokens.shape[0]
# if args.eval_bos:
if model.config.arch.requires_bos:
boss = torch.full((eval_tokens.shape[0], 1), tokenizer.bos_token_id, dtype = torch.long)
eval_tokens = torch.cat((boss, eval_tokens[:, :-1]), dim = 1)
logprob_sum = 0.0
logprob_count = 0
def ppl(input_ids__, logits__, lengths__):
logprob_sum_ = 0.0
logprob_count_ = 0
assert logits__.shape[0] == input_ids__.shape[0]
ll = logits__.shape[1]
for bi in range(logits__.shape[0]):
cl = max(ll - lengths__[bi], 0)
logits_ = logits__[bi:bi+1, cl:, :]
input_ids_ = input_ids__[bi:bi+1, cl:]
chunksize = logits_.shape[1] * 4000 // logits_.shape[2] + 1
b_ = 0
while b_ < logits_.shape[1]:
a_ = b_
b_ = min(b_ + chunksize, logits_.shape[1])
logits_f = logits_[:, a_:b_, :].float() + 1e-10
target_ids = input_ids_[:, a_ + 1:b_ + 1].to(logits_.device)
log_probs = F.log_softmax(logits_f, dim=-1)
token_log_probs = log_probs.gather(-1, target_ids.unsqueeze(-1)).squeeze(-1)
logprob_sum_ += token_log_probs.sum().item()
logprob_count_ += target_ids.numel()
return logprob_sum_, logprob_count_
if args.stream_layers:
print(f" -- Inference (streamed)", end = "")
sys.stdout.flush()
batch_size, seq_len = eval_tokens.shape
attn_params = ExLlamaV2Attention.Params(stream_batch_size, seq_len, 0, None, None)
# attn_mask = model.build_attn_mask(stream_batch_size, seq_len, 0, None, "cuda:0")
for idx, module in enumerate(model.modules):
module.set_device_idx(-1 if idx == 0 else 0)
model.modules[0].load()
hidden_state = model.modules[0].forward(eval_tokens)
model.modules[0].unload()
for idx, module in enumerate(model.modules):
if idx == 0: continue
print(".", end = "")
sys.stdout.flush()
module.load()
b = 0
while b < eval_tokens.shape[0]:
a = b
b = min(b + stream_batch_size, eval_tokens.shape[0])
x = hidden_state[a:b, :, :].to("cuda:0")
x = module.forward(x, cache = None, attn_params = attn_params, past_len = 0, loras = None)
if idx < len(model.modules) - 1:
hidden_state[a:b, :, :] = x.to("cpu")
else:
input_ids = eval_tokens[a:b, :]
logits = x[:, :-1, :]
# if model.config.logit_scale != 1:
# logits.mul_(model.config.logit_scale)
logprob_sum__, logprob_count__ = ppl(input_ids, logits, eval_len[a:b])
logprob_sum += logprob_sum__
logprob_count += logprob_count__
module.unload()
print()
else:
print(f" -- Inference", end = "")
sys.stdout.flush()
if cache is None:
cache = ExLlamaV2Cache(model, max_seq_len = eval_length) if eval_length > model.config.max_input_len else None
for i in range(eval_tokens.shape[0]):
if i % 10 == 0: print(".", end = "")
sys.stdout.flush()
input_ids = eval_tokens[i:i+1, :]
input_ids = input_ids[:, :]
if cache is not None: cache.current_seq_len = 0
logits = model.forward(input_ids, cache)
logits = logits[:, :-1, :]
logprob_sum__, logprob_count__ = ppl(input_ids, logits, eval_len[i:i+1])
logprob_sum += logprob_sum__
logprob_count += logprob_count__
print()
mean_log_prob = logprob_sum / logprob_count
perplexity = math.exp(-mean_log_prob)
print(f" -- Evaluation perplexity: {perplexity:.4f}")
def test_ppl_token():
global logprob_sum, logprob_count, i, input_ids
global logits, target_ids, log_probs, token_log_probs
global mean_log_prob, perplexity
# set_catch("model.layers.3")
logprob_sum = 0
logprob_count = 0
for i in range(eval_tokens.shape[0]):
cache.current_seq_len = 0
for j in range(eval_tokens.shape[1] - 1):
if j % 256 == 0: print(".", end = "")
sys.stdout.flush()
input_ids = eval_tokens[i:i + 1, j:j + 1]
logits = model.forward(input_ids, cache)
logits = logits.float() + 1e-10
log_probs = F.log_softmax(logits, dim = -1)
logprob_sum += log_probs[0, 0, eval_tokens[i, j+1]]
logprob_count += 1
# mean_log_prob = logprob_sum / logprob_count
# perplexity = math.exp(-mean_log_prob)
# print(f" -- Token {j}: {perplexity:.4f}")
print()
mean_log_prob = logprob_sum / logprob_count
perplexity = math.exp(-mean_log_prob)
print(f" -- Evaluation perplexity: {perplexity:.4f}")
if args.eval_token:
if args.standard_perplexity:
print(f" !! Note, can't evalutate token perplexity on standard test")
else:
print(f" -- Inference (token)", end = "")
sys.stdout.flush()
cache = ExLlamaV2Cache(model, max_seq_len = eval_length)
test_ppl_token()
if args.eval_token_8bit:
if args.standard_perplexity:
print(f" !! Note, can't evalutate token perplexity on standard test")
else:
print(f" -- Inference (token, 8-bit cache)", end = "")
sys.stdout.flush()
cache = ExLlamaV2Cache_8bit(model, max_seq_len = eval_length)
test_ppl_token()
if args.eval_token_q4:
if args.standard_perplexity:
print(f" !! Note, can't evalutate token perplexity on standard test")
else:
print(f" -- Inference (token, Q4 cache)", end = "")
sys.stdout.flush()
cache = ExLlamaV2Cache_Q4(model, max_seq_len = eval_length)
test_ppl_token()
# Test prompt speed
if args.prompt_speed:
with torch.inference_mode():
if cache is None:
cache = ExLlamaV2Cache(model)
ids = torch.randint(0, model.config.vocab_size - 1, (1, model.config.max_seq_len))
print(f" -- Warmup...")
if not args.no_warmup:
model.forward(ids[:, -1:])
print(f" -- Measuring prompt speed...")
torch.cuda.synchronize()
current_len = 128
step = 128
prompt_iters = 3
while True:
total_time = 0
for i in range(prompt_iters):
torch.cuda.synchronize()
time_begin = time.time()
cache.current_seq_len = 0
model.forward(ids[:, :current_len], cache, preprocess_only = True)
torch.cuda.synchronize()
time_end = time.time()
total_time += time_end - time_begin
tps = current_len / (total_time / prompt_iters)
print(f" ** Length {current_len:>5} tokens: {tps:>11.4f} t/s")
if current_len >= 1024: step = 1024
if current_len >= 4096: step = 4096
if current_len >= 16384: step = 8192
current_len_ = current_len
current_len = min(current_len + step, model.config.max_seq_len)
if current_len == current_len_: break
# Test token speed
if args.speed:
with torch.inference_mode():
if cache is None:
cache = ExLlamaV2Cache(model)
cache.current_seq_len = 0
print(f" -- Measuring token speed...")
ids = tokenizer.encode("X")
model.forward(ids[:, :])
current_idx = ids.shape[-1]
next_stop = 128
while True:
time_begin = time.time()
tokens = next_stop - current_idx
for i in range(tokens):
logits = model.forward(ids[:, -1:], cache)
sample = torch.argmax(logits[0, -1]).cpu().unsqueeze(0).unsqueeze(0)
ids = torch.cat((ids, sample), dim=-1)
time_end = time.time()
tps = tokens / (time_end - time_begin)
print(f" ** Position {current_idx:>5} + {tokens:>3} tokens: {tps:>9.4f} t/s")
current_idx = next_stop
next_stop = min(next_stop + 128, model.config.max_seq_len)
if next_stop == current_idx: break