w95 commited on
Commit
53ed368
1 Parent(s): 9e76885

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -21
README.md CHANGED
@@ -2604,34 +2604,15 @@ model-index:
2604
  value: 78.25741142443962
2605
  ---
2606
 
2607
- # ember-v1
2608
-
2609
- <p align="center">
2610
- <img src="https://console.llmrails.com/assets/img/logo-black.svg" width="150px">
2611
- </p>
2612
 
2613
  This model has been trained on an extensive corpus of text pairs that encompass a broad spectrum of domains, including finance, science, medicine, law, and various others. During the training process, we incorporated techniques derived from the [RetroMAE](https://arxiv.org/abs/2205.12035) and [SetFit](https://arxiv.org/abs/2209.11055) research papers.
2614
 
2615
- We are pleased to offer this model as an API service through our platform, [LLMRails](https://llmrails.com/?ref=ember-v1). If you are interested, please don't hesitate to sign up.
2616
-
2617
  ### Plans
2618
  - The research paper will be published soon.
2619
  - The v2 of the model is currently in development and will feature an extended maximum sequence length of 4,000 tokens.
2620
 
2621
  ## Usage
2622
- Use with API request:
2623
- ```bash
2624
- curl --location 'https://api.llmrails.com/v1/embeddings' \
2625
- --header 'X-API-KEY: {token}' \
2626
- --header 'Content-Type: application/json' \
2627
- --data '{
2628
- "input": ["This is an example sentence"],
2629
- "model":"embedding-english-v1" # equals to ember-v1
2630
- }'
2631
- ```
2632
- API docs: https://docs.llmrails.com/embedding/embed-text<br>
2633
- Langchain plugin: https://python.langchain.com/docs/integrations/text_embedding/llm_rails
2634
-
2635
  Use with transformers:
2636
  ```python
2637
  import torch.nn.functional as F
@@ -2692,4 +2673,15 @@ Our model achieve state-of-the-art performance on [MTEB leaderboard](https://hug
2692
 
2693
  This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
2694
 
2695
- <img src="https://pixel.llmrails.com/hf/2AtscRthisA1rZzQr8T7Zm">
 
 
 
 
 
 
 
 
 
 
 
 
2604
  value: 78.25741142443962
2605
  ---
2606
 
2607
+ <h1 align="center">ember-v1</h1>
 
 
 
 
2608
 
2609
  This model has been trained on an extensive corpus of text pairs that encompass a broad spectrum of domains, including finance, science, medicine, law, and various others. During the training process, we incorporated techniques derived from the [RetroMAE](https://arxiv.org/abs/2205.12035) and [SetFit](https://arxiv.org/abs/2209.11055) research papers.
2610
 
 
 
2611
  ### Plans
2612
  - The research paper will be published soon.
2613
  - The v2 of the model is currently in development and will feature an extended maximum sequence length of 4,000 tokens.
2614
 
2615
  ## Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
2616
  Use with transformers:
2617
  ```python
2618
  import torch.nn.functional as F
 
2673
 
2674
  This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
2675
 
2676
+ ## License
2677
+ MIT
2678
+
2679
+ ## Citation
2680
+
2681
+ ```bibtex
2682
+ @misc{nur2024emberv1,
2683
+ title={ember-v1: SOTA embedding model},
2684
+ author={Enrike Nur and Anar Aliyev},
2685
+ year={2023},
2686
+ }
2687
+ ```