Upload dragon_rag_benchmark_tests_llmware.py
Browse files
dragon_rag_benchmark_tests_llmware.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""This example demonstrates running a benchmarks set of tests against llmware DRAGON models
|
3 |
+
https://huggingface.co/collections/llmware/dragon-models-65552d7648093c3f6e35d1bf
|
4 |
+
The model loading and interaction is handled with the llmware Prompt class which provides additional
|
5 |
+
capabilities like evidence checking
|
6 |
+
"""
|
7 |
+
|
8 |
+
import time
|
9 |
+
from llmware.prompts import Prompt
|
10 |
+
# The datasets package is not installed automatically by llmware
|
11 |
+
try:
|
12 |
+
from datasets import load_dataset
|
13 |
+
except ImportError:
|
14 |
+
raise ImportError ("This example requires the 'datasets' Python package. You can install it with 'pip install datasets'")
|
15 |
+
|
16 |
+
|
17 |
+
# Pull a 200 question RAG benchmark test dataset from llmware HuggingFace repo
|
18 |
+
def load_rag_benchmark_tester_dataset():
|
19 |
+
|
20 |
+
dataset_name = "llmware/rag_instruct_benchmark_tester"
|
21 |
+
print(f"\n > Loading RAG dataset '{dataset_name}'...")
|
22 |
+
dataset = load_dataset(dataset_name)
|
23 |
+
|
24 |
+
test_set = []
|
25 |
+
for i, samples in enumerate(dataset["train"]):
|
26 |
+
test_set.append(samples)
|
27 |
+
|
28 |
+
return test_set
|
29 |
+
|
30 |
+
# Run the benchmark test
|
31 |
+
def run_test(model_name, prompt_list):
|
32 |
+
|
33 |
+
print(f"\n > Loading model '{model_name}'")
|
34 |
+
prompter = Prompt().load_model(model_name)
|
35 |
+
|
36 |
+
print(f"\n > Running RAG Benchmark Test against '{model_name}' - 200 questions")
|
37 |
+
for i, entry in enumerate(prompt_list):
|
38 |
+
|
39 |
+
start_time = time.time()
|
40 |
+
|
41 |
+
prompt = entry["query"]
|
42 |
+
context = entry["context"]
|
43 |
+
response = prompter.prompt_main(prompt,context=context,prompt_name="default_with_context", temperature=0.0, sample=False)
|
44 |
+
|
45 |
+
# Print results
|
46 |
+
time_taken = round(time.time() - start_time, 2)
|
47 |
+
print("\n")
|
48 |
+
print(f"{i+1}. llm_response - {response['llm_response']}")
|
49 |
+
print(f"{i+1}. gold_answer - {entry['answer']}")
|
50 |
+
print(f"{i+1}. time_taken - {time_taken}")
|
51 |
+
|
52 |
+
# Fact checking
|
53 |
+
fc = prompter.evidence_check_numbers(response)
|
54 |
+
sc = prompter.evidence_comparison_stats(response)
|
55 |
+
sr = prompter.evidence_check_sources(response)
|
56 |
+
for fc_entry in fc:
|
57 |
+
for f, facts in enumerate(fc_entry["fact_check"]):
|
58 |
+
print(f"{i+1}. fact_check - {f} {facts}")
|
59 |
+
|
60 |
+
for sc_entry in sc:
|
61 |
+
print(f"{i+1}. comparison_stats - {sc_entry['comparison_stats']}")
|
62 |
+
|
63 |
+
for sr_entry in sr:
|
64 |
+
for s, source in enumerate(sr_entry["source_review"]):
|
65 |
+
print(f"{i+1}. source - {s} {source}")
|
66 |
+
|
67 |
+
return 0
|
68 |
+
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
|
72 |
+
# Get the benchmark dataset
|
73 |
+
test_dataset = load_rag_benchmark_tester_dataset()
|
74 |
+
|
75 |
+
# BLING MODELS
|
76 |
+
bling_models = ["llmware/bling-1b-0.1", "llmware/bling-1.4b-0.1", "llmware/bling-falcon-1b-0.1",
|
77 |
+
"llmware/bling-cerebras-1.3b-0.1", "llmware/bling-sheared-llama-1.3b-0.1",
|
78 |
+
"llmware/bling-sheared-llama-2.7b-0.1", "llmware/bling-red-pajamas-3b-0.1",
|
79 |
+
"llmware/bling-stable-lm-3b-4e1t-v0"]
|
80 |
+
|
81 |
+
# DRAGON MODELS
|
82 |
+
dragon_models = ['llmware/dragon-yi-6b-v0', 'llmware/dragon-red-pajama-7b-v0', 'llmware/dragon-stablelm-7b-v0',
|
83 |
+
'llmware/dragon-deci-6b-v0', 'llmware/dragon-mistral-7b-v0','llmware/dragon-falcon-7b-v0',
|
84 |
+
'llmware/dragon-llama-7b-v0']
|
85 |
+
|
86 |
+
# Pick a model - note: if running on laptop/CPU, select a bling model
|
87 |
+
model_name = dragon_models[0]
|
88 |
+
model_name = "bling-phi-3-gguf"
|
89 |
+
|
90 |
+
output = run_test(model_name, test_dataset)
|
91 |
+
|