doberst commited on
Commit
dad9229
1 Parent(s): 17a5c5d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -8,9 +8,9 @@ license: other
8
 
9
  **dragon-yi-answer-tool** is a quantized version of DRAGON Yi 6B, with 4_K_M GGUF quantization, providing a fast, small inference implementation for use on CPUs.
10
 
11
- [**DRAGON Yi 6B**](https://huggingface.co/llmware/dragon-yi-6b-v0) is a fact-based question-answering model, optimized for complex business documents.
12
 
13
- We are providing as a separate repository that can be pulled directly:
14
 
15
  from huggingface_hub import snapshot_download
16
  snapshot_download("llmware/dragon-yi-answer-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
@@ -19,8 +19,8 @@ We are providing as a separate repository that can be pulled directly:
19
  Load in your favorite GGUF inference engine, or try with llmware as follows:
20
 
21
  from llmware.models import ModelCatalog
22
- model = ModelCatalog().load_model("llmware/dragon-yi-answer-tool")
23
- response = model.inference(query, text_sample)
24
 
25
  Note: please review [**config.json**](https://huggingface.co/llmware/dragon-yi-answer-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
26
 
 
8
 
9
  **dragon-yi-answer-tool** is a quantized version of DRAGON Yi 6B, with 4_K_M GGUF quantization, providing a fast, small inference implementation for use on CPUs.
10
 
11
+ [**dragon-yi-6b**](https://huggingface.co/llmware/dragon-yi-6b-v0) is a fact-based question-answering model, optimized for complex business documents.
12
 
13
+ To pull the model via API:
14
 
15
  from huggingface_hub import snapshot_download
16
  snapshot_download("llmware/dragon-yi-answer-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
 
19
  Load in your favorite GGUF inference engine, or try with llmware as follows:
20
 
21
  from llmware.models import ModelCatalog
22
+ model = ModelCatalog().load_model("dragon-yi-answer-tool")
23
+ response = model.inference(query, add_context=text_sample)
24
 
25
  Note: please review [**config.json**](https://huggingface.co/llmware/dragon-yi-answer-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
26