File size: 1,507 Bytes
77bb51f 7e07f93 77bb51f 9b4b620 8025da6 9b4b620 8025da6 9b4b620 f4dcf14 8025da6 9b4b620 8025da6 9b4b620 8025da6 9b4b620 8025da6 9b4b620 8025da6 9b4b620 7e07f93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
license: cc-by-sa-4.0
---
# SLIM-EXTRACT-TOOL
<!-- Provide a quick summary of what the model is/does. -->
**slim-extract-tool** is a 4_K_M quantized GGUF version of slim-extract, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.
[**slim-extract**](https://huggingface.co/llmware/slim-extract) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.
To pull the model via API:
from huggingface_hub import snapshot_download
snapshot_download("llmware/slim-extract-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
Load in your favorite GGUF inference engine, or try with llmware as follows:
from llmware.models import ModelCatalog
# to load the model and make a basic inference
model = ModelCatalog().load_model("slim-extract-tool")
response = model.function_call(text_sample)
# this one line will download the model and run a series of tests
ModelCatalog().tool_test_run("slim-extract-tool", verbose=True)
Note: please review [**config.json**](https://huggingface.co/llmware/slim-extract-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
## Model Card Contact
Darren Oberst & llmware team
[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h) |