doberst commited on
Commit
aaa6259
1 Parent(s): 9b4b620

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -9
README.md CHANGED
@@ -2,19 +2,21 @@
2
  license: apache-2.0
3
  ---
4
 
5
- # SLIM-TOPICS-TOOL
6
 
7
  <!-- Provide a quick summary of what the model is/does. -->
8
 
9
 
10
- **slim-topics-tool** is a 4_K_M quantized GGUF version of slim-topics, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.
11
 
12
- [**slim-topics**](https://huggingface.co/llmware/slim-topics) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.
 
 
13
 
14
  To pull the model via API:
15
 
16
  from huggingface_hub import snapshot_download
17
- snapshot_download("llmware/slim-topics-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
18
 
19
 
20
  Load in your favorite GGUF inference engine, or try with llmware as follows:
@@ -22,11 +24,11 @@ Load in your favorite GGUF inference engine, or try with llmware as follows:
22
  from llmware.models import ModelCatalog
23
 
24
  # to load the model and make a basic inference
25
- model = ModelCatalog().load_model("slim-topics-tool")
26
  response = model.function_call(text_sample)
27
 
28
  # this one line will download the model and run a series of tests
29
- ModelCatalog().tool_test_run("slim-topics-tool", verbose=True)
30
 
31
 
32
  Slim models can also be loaded even more simply as part of a multi-model, multi-step LLMfx calls:
@@ -34,11 +36,11 @@ Slim models can also be loaded even more simply as part of a multi-model, multi-
34
  from llmware.agents import LLMfx
35
 
36
  llm_fx = LLMfx()
37
- llm_fx.load_tool("topics")
38
- response = llm_fx.topics(text)
39
 
40
 
41
- Note: please review [**config.json**](https://huggingface.co/llmware/slim-topics-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
42
 
43
 
44
  ## Model Card Contact
 
2
  license: apache-2.0
3
  ---
4
 
5
+ # SLIM-SA-NER-3B-TOOL
6
 
7
  <!-- Provide a quick summary of what the model is/does. -->
8
 
9
 
10
+ **slim-sa-ner-3b-tool** is a 4_K_M quantized GGUF version of slim-sa-ner-3b, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.
11
 
12
+ This model combines two of the most popular traditional classifier capabilities (sentiment analysis and named entity recognition) and re-images them as function calls on a small specialized decoder LLM, generating output in the form of a python dictionary with keys corresponding to sentiment and NER identifiers.
13
+
14
+ [**slim-sa-ner-3b**](https://huggingface.co/llmware/slim-sa-ner-3b) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.
15
 
16
  To pull the model via API:
17
 
18
  from huggingface_hub import snapshot_download
19
+ snapshot_download("llmware/slim-sa-ner-3b-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
20
 
21
 
22
  Load in your favorite GGUF inference engine, or try with llmware as follows:
 
24
  from llmware.models import ModelCatalog
25
 
26
  # to load the model and make a basic inference
27
+ model = ModelCatalog().load_model("slim-sa-ner-3b-tool")
28
  response = model.function_call(text_sample)
29
 
30
  # this one line will download the model and run a series of tests
31
+ ModelCatalog().tool_test_run("slim-sa-ner-3b-tool", verbose=True)
32
 
33
 
34
  Slim models can also be loaded even more simply as part of a multi-model, multi-step LLMfx calls:
 
36
  from llmware.agents import LLMfx
37
 
38
  llm_fx = LLMfx()
39
+ llm_fx.load_tool("sa-ner")
40
+ response = llm_fx.sa_ner(text)
41
 
42
 
43
+ Note: please review [**config.json**](https://huggingface.co/llmware/slim-sa-ner-3b-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
44
 
45
 
46
  ## Model Card Contact