update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8-sample8
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8-sample8
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base-short-finetuned-ssv2](https://huggingface.co/MCG-NJU/videomae-base-short-finetuned-ssv2) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 3.2493
|
20 |
+
- Accuracy: 0.3857
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 2
|
41 |
+
- eval_batch_size: 2
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_ratio: 0.1
|
46 |
+
- training_steps: 6400
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 0.6783 | 0.12 | 800 | 0.5823 | 0.8175 |
|
53 |
+
| 0.7397 | 1.12 | 1600 | 2.2365 | 0.5475 |
|
54 |
+
| 0.206 | 2.12 | 2400 | 1.4244 | 0.6375 |
|
55 |
+
| 0.0431 | 3.12 | 3200 | 0.9144 | 0.7525 |
|
56 |
+
| 0.0033 | 4.12 | 4000 | 0.7622 | 0.825 |
|
57 |
+
| 0.0011 | 5.12 | 4800 | 1.0658 | 0.775 |
|
58 |
+
| 0.001 | 6.12 | 5600 | 1.6892 | 0.6875 |
|
59 |
+
| 0.2392 | 7.12 | 6400 | 1.1574 | 0.7825 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.25.1
|
65 |
+
- Pytorch 1.13.1+cu117
|
66 |
+
- Datasets 2.8.0
|
67 |
+
- Tokenizers 0.13.2
|