File size: 2,811 Bytes
f6c5562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: t5-small-codesearchnet-python
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-codesearchnet-python

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7802
- Bleu: 0.0027
- Rouge1: 0.2097
- Rouge2: 0.0628
- Avg Length: 15.7496

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   | Rouge1 | Rouge2 | Avg Length |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:----------:|
| No log        | 1.0   | 375  | 0.9665          | 0.0004 | 0.1696 | 0.0384 | 14.1472    |
| 2.0677        | 2.0   | 750  | 0.8740          | 0.0004 | 0.1758 | 0.0428 | 13.38      |
| 0.8314        | 3.0   | 1125 | 0.8281          | 0.001  | 0.1925 | 0.0505 | 14.8026    |
| 0.7563        | 4.0   | 1500 | 0.7996          | 0.0017 | 0.2033 | 0.0582 | 14.9606    |
| 0.7563        | 5.0   | 1875 | 0.7780          | 0.0022 | 0.2117 | 0.0607 | 14.9434    |
| 0.6959        | 6.0   | 2250 | 0.7587          | 0.002  | 0.2135 | 0.0621 | 14.6926    |
| 0.6591        | 7.0   | 2625 | 0.7545          | 0.002  | 0.2073 | 0.0605 | 15.2818    |
| 0.6205        | 8.0   | 3000 | 0.7472          | 0.0024 | 0.2187 | 0.0674 | 15.051     |
| 0.6205        | 9.0   | 3375 | 0.7506          | 0.0031 | 0.2266 | 0.0696 | 15.6286    |
| 0.5822        | 10.0  | 3750 | 0.7449          | 0.001  | 0.206  | 0.063  | 13.1462    |
| 0.5553        | 11.0  | 4125 | 0.7573          | 0.0027 | 0.2148 | 0.0647 | 16.4076    |
| 0.5295        | 12.0  | 4500 | 0.7677          | 0.0026 | 0.2185 | 0.0658 | 15.8986    |
| 0.5295        | 13.0  | 4875 | 0.7595          | 0.0009 | 0.2052 | 0.0618 | 12.3528    |
| 0.4977        | 14.0  | 5250 | 0.7766          | 0.0035 | 0.2177 | 0.0636 | 16.6706    |
| 0.4818        | 15.0  | 5625 | 0.7802          | 0.0027 | 0.2097 | 0.0628 | 15.7496    |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3