File size: 2,810 Bytes
93a6d82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: t5-small-codesearchnet-python
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-codesearchnet-python

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0785
- Bleu: 0.035
- Rouge1: 0.6257
- Rouge2: 0.6078
- Avg Length: 16.9954

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   | Rouge1 | Rouge2 | Avg Length |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:----------:|
| No log        | 1.0   | 375  | 0.0801          | 0.0358 | 0.6174 | 0.6    | 17.1074    |
| 1.6066        | 2.0   | 750  | 0.0674          | 0.036  | 0.6249 | 0.6068 | 17.0262    |
| 0.0584        | 3.0   | 1125 | 0.0632          | 0.0351 | 0.6255 | 0.6075 | 16.9962    |
| 0.0484        | 4.0   | 1500 | 0.0605          | 0.0351 | 0.6251 | 0.6071 | 17.003     |
| 0.0484        | 5.0   | 1875 | 0.0596          | 0.035  | 0.6255 | 0.6075 | 17.0012    |
| 0.0418        | 6.0   | 2250 | 0.0602          | 0.035  | 0.6258 | 0.608  | 16.9958    |
| 0.0377        | 7.0   | 2625 | 0.0593          | 0.0351 | 0.6259 | 0.6079 | 17.0004    |
| 0.033         | 8.0   | 3000 | 0.0618          | 0.035  | 0.6257 | 0.6078 | 17.0032    |
| 0.033         | 9.0   | 3375 | 0.0637          | 0.035  | 0.6257 | 0.6078 | 16.998     |
| 0.028         | 10.0  | 3750 | 0.0645          | 0.035  | 0.6257 | 0.6079 | 16.9984    |
| 0.0255        | 11.0  | 4125 | 0.0650          | 0.035  | 0.6255 | 0.6078 | 17.0008    |
| 0.0226        | 12.0  | 4500 | 0.0748          | 0.035  | 0.6254 | 0.6076 | 16.9976    |
| 0.0226        | 13.0  | 4875 | 0.0714          | 0.035  | 0.6256 | 0.6079 | 16.9954    |
| 0.019         | 14.0  | 5250 | 0.0747          | 0.0349 | 0.6253 | 0.6077 | 16.994     |
| 0.0172        | 15.0  | 5625 | 0.0785          | 0.035  | 0.6257 | 0.6078 | 16.9954    |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3