lmg-anon commited on
Commit
7718f05
1 Parent(s): d400168

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. checkpoint-100/README.md +204 -0
  2. checkpoint-100/adapter_config.json +32 -0
  3. checkpoint-100/adapter_model.safetensors +3 -0
  4. checkpoint-100/optimizer.pt +3 -0
  5. checkpoint-100/rng_state.pth +3 -0
  6. checkpoint-100/scheduler.pt +3 -0
  7. checkpoint-100/trainer_state.json +621 -0
  8. checkpoint-100/training_args.bin +3 -0
  9. checkpoint-150/README.md +204 -0
  10. checkpoint-150/adapter_config.json +32 -0
  11. checkpoint-150/adapter_model.safetensors +3 -0
  12. checkpoint-150/optimizer.pt +3 -0
  13. checkpoint-150/rng_state.pth +3 -0
  14. checkpoint-150/scheduler.pt +3 -0
  15. checkpoint-150/trainer_state.json +921 -0
  16. checkpoint-150/training_args.bin +3 -0
  17. checkpoint-200/README.md +204 -0
  18. checkpoint-200/adapter_config.json +32 -0
  19. checkpoint-200/adapter_model.safetensors +3 -0
  20. checkpoint-200/optimizer.pt +3 -0
  21. checkpoint-200/rng_state.pth +3 -0
  22. checkpoint-200/scheduler.pt +3 -0
  23. checkpoint-200/trainer_state.json +1221 -0
  24. checkpoint-200/training_args.bin +3 -0
  25. checkpoint-250/README.md +204 -0
  26. checkpoint-250/adapter_config.json +32 -0
  27. checkpoint-250/adapter_model.safetensors +3 -0
  28. checkpoint-250/optimizer.pt +3 -0
  29. checkpoint-250/rng_state.pth +3 -0
  30. checkpoint-250/scheduler.pt +3 -0
  31. checkpoint-250/trainer_state.json +1521 -0
  32. checkpoint-250/training_args.bin +3 -0
  33. checkpoint-300/README.md +204 -0
  34. checkpoint-300/adapter_config.json +32 -0
  35. checkpoint-300/adapter_model.safetensors +3 -0
  36. checkpoint-300/optimizer.pt +3 -0
  37. checkpoint-300/rng_state.pth +3 -0
  38. checkpoint-300/scheduler.pt +3 -0
  39. checkpoint-300/trainer_state.json +1821 -0
  40. checkpoint-300/training_args.bin +3 -0
  41. checkpoint-350/README.md +204 -0
  42. checkpoint-350/adapter_config.json +32 -0
  43. checkpoint-350/adapter_model.safetensors +3 -0
  44. checkpoint-350/optimizer.pt +3 -0
  45. checkpoint-350/rng_state.pth +3 -0
  46. checkpoint-350/scheduler.pt +3 -0
  47. checkpoint-350/trainer_state.json +2121 -0
  48. checkpoint-350/training_args.bin +3 -0
  49. checkpoint-400/README.md +204 -0
  50. checkpoint-400/adapter_config.json +32 -0
checkpoint-100/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: KnutJaegersberg/Qwen-14B-Llamafied
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "KnutJaegersberg/Qwen-14B-Llamafied",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": "unsloth",
21
+ "target_modules": [
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bef581b9f6007f04721d4287108c0baea86fed1b3a5ae788c516220181adba6a
3
+ size 1994992752
checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85608b392bdf6c8664ff0b0270e77229a24a075f53f0006db6a137d078408c0b
3
+ size 1000056916
checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57bc02148dd0159bbaeb8f292f770792854f59a38a545c9fbc852f9d91c79bf5
3
+ size 1064
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,621 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.17740981667652278,
5
+ "eval_steps": 500,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5.4166666666666664e-05,
14
+ "loss": 2.8488,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00010833333333333333,
20
+ "loss": 2.7815,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.0001625,
26
+ "loss": 2.8002,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00021666666666666666,
32
+ "loss": 2.7473,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0002708333333333333,
38
+ "loss": 2.4233,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.000325,
44
+ "loss": 1.9676,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 0.00037916666666666665,
50
+ "loss": 1.7562,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 0.0004333333333333333,
56
+ "loss": 1.3949,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004875,
62
+ "loss": 1.2908,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0005416666666666666,
68
+ "loss": 1.2542,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 0.0005958333333333333,
74
+ "loss": 1.2959,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 0.00065,
80
+ "loss": 1.1706,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 0.0006499947173877214,
86
+ "loss": 1.0829,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 0.0006499788697226147,
92
+ "loss": 1.128,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 0.0006499524575198621,
98
+ "loss": 1.0847,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 0.0006499154816380815,
104
+ "loss": 1.1143,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 0.0006498679432792988,
110
+ "loss": 1.0751,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 0.0006498098439889095,
116
+ "loss": 1.179,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 0.0006497411856556275,
122
+ "loss": 1.0327,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 0.0006496619705114241,
128
+ "loss": 1.0672,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 0.0006495722011314557,
134
+ "loss": 1.1625,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 0.0006494718804339797,
140
+ "loss": 1.0751,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 0.0006493610116802598,
146
+ "loss": 0.996,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 0.0006492395984744599,
152
+ "loss": 1.0478,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 0.0006491076447635269,
158
+ "loss": 1.064,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 0.0006489651548370628,
164
+ "loss": 0.9393,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 0.0006488121333271846,
170
+ "loss": 0.9282,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 0.0006486485852083744,
176
+ "loss": 1.0558,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 0.0006484745157973169,
182
+ "loss": 1.0015,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 0.0006482899307527272,
188
+ "loss": 1.0261,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 0.0006480948360751669,
194
+ "loss": 1.0507,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 0.0006478892381068483,
200
+ "loss": 1.0225,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 0.0006476731435314292,
206
+ "loss": 0.9411,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 0.0006474465593737948,
212
+ "loss": 0.9884,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 0.0006472094929998295,
218
+ "loss": 0.9892,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 0.0006469619521161782,
224
+ "loss": 1.0527,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 0.0006467039447699945,
230
+ "loss": 0.969,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 0.0006464354793486803,
236
+ "loss": 1.0009,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 0.0006461565645796124,
242
+ "loss": 1.0068,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 0.0006458672095298589,
248
+ "loss": 0.9626,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 0.0006455674236058847,
254
+ "loss": 0.934,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.07,
259
+ "learning_rate": 0.0006452572165532456,
260
+ "loss": 1.0217,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 0.0006449365984562712,
266
+ "loss": 1.0036,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 0.0006446055797377376,
272
+ "loss": 0.9234,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.08,
277
+ "learning_rate": 0.000644264171158528,
278
+ "loss": 0.9771,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.08,
283
+ "learning_rate": 0.0006439123838172836,
284
+ "loss": 1.013,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 0.0006435502291500418,
290
+ "loss": 0.9154,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 0.0006431777189298656,
296
+ "loss": 0.9098,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 0.0006427948652664599,
302
+ "loss": 0.9243,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.09,
307
+ "learning_rate": 0.0006424016806057781,
308
+ "loss": 0.9162,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.09,
313
+ "learning_rate": 0.0006419981777296182,
314
+ "loss": 0.9538,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.09,
319
+ "learning_rate": 0.0006415843697552062,
320
+ "loss": 0.9454,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.09,
325
+ "learning_rate": 0.0006411602701347703,
326
+ "loss": 0.9296,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 0.0006407258926551036,
332
+ "loss": 0.929,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 0.0006402812514371154,
338
+ "loss": 0.9172,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.1,
343
+ "learning_rate": 0.0006398263609353731,
344
+ "loss": 0.9871,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.1,
349
+ "learning_rate": 0.0006393612359376315,
350
+ "loss": 0.9279,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.1,
355
+ "learning_rate": 0.0006388858915643519,
356
+ "loss": 0.9191,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.1,
361
+ "learning_rate": 0.0006384003432682119,
362
+ "loss": 0.9828,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 0.0006379046068336013,
368
+ "loss": 0.8912,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.11,
373
+ "learning_rate": 0.00063739869837611,
374
+ "loss": 0.9023,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.11,
379
+ "learning_rate": 0.0006368826343420043,
380
+ "loss": 0.9978,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.11,
385
+ "learning_rate": 0.0006363564315076915,
386
+ "loss": 0.9097,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.11,
391
+ "learning_rate": 0.0006358201069791749,
392
+ "loss": 0.8475,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 0.000635273678191498,
398
+ "loss": 0.9763,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.12,
403
+ "learning_rate": 0.000634717162908177,
404
+ "loss": 0.8673,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.12,
409
+ "learning_rate": 0.0006341505792206243,
410
+ "loss": 0.9188,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.12,
415
+ "learning_rate": 0.0006335739455475594,
416
+ "loss": 0.865,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.12,
421
+ "learning_rate": 0.0006329872806344108,
422
+ "loss": 0.9187,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.12,
427
+ "learning_rate": 0.0006323906035527062,
428
+ "loss": 0.887,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.13,
433
+ "learning_rate": 0.0006317839336994531,
434
+ "loss": 0.908,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.13,
439
+ "learning_rate": 0.0006311672907965074,
440
+ "loss": 0.918,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.13,
445
+ "learning_rate": 0.0006305406948899329,
446
+ "loss": 0.9399,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.13,
451
+ "learning_rate": 0.0006299041663493497,
452
+ "loss": 0.9741,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.13,
457
+ "learning_rate": 0.0006292577258672713,
458
+ "loss": 0.8738,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.13,
463
+ "learning_rate": 0.0006286013944584328,
464
+ "loss": 0.9192,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.14,
469
+ "learning_rate": 0.0006279351934591071,
470
+ "loss": 0.8589,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.14,
475
+ "learning_rate": 0.0006272591445264116,
476
+ "loss": 0.955,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.14,
481
+ "learning_rate": 0.0006265732696376042,
482
+ "loss": 0.928,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.14,
487
+ "learning_rate": 0.0006258775910893685,
488
+ "loss": 0.8454,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.14,
493
+ "learning_rate": 0.0006251721314970894,
494
+ "loss": 0.8709,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.15,
499
+ "learning_rate": 0.0006244569137941179,
500
+ "loss": 0.8732,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.15,
505
+ "learning_rate": 0.0006237319612310249,
506
+ "loss": 0.9345,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.15,
511
+ "learning_rate": 0.0006229972973748463,
512
+ "loss": 0.9342,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.15,
517
+ "learning_rate": 0.0006222529461083165,
518
+ "loss": 0.8803,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.15,
523
+ "learning_rate": 0.0006214989316290914,
524
+ "loss": 0.8676,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.15,
529
+ "learning_rate": 0.0006207352784489629,
530
+ "loss": 0.9195,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.16,
535
+ "learning_rate": 0.000619962011393061,
536
+ "loss": 0.9505,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.16,
541
+ "learning_rate": 0.0006191791555990477,
542
+ "loss": 0.8778,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.16,
547
+ "learning_rate": 0.0006183867365162994,
548
+ "loss": 0.9663,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.16,
553
+ "learning_rate": 0.0006175847799050789,
554
+ "loss": 0.9304,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.16,
559
+ "learning_rate": 0.0006167733118356993,
560
+ "loss": 0.9233,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.16,
565
+ "learning_rate": 0.0006159523586876756,
566
+ "loss": 0.9167,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.17,
571
+ "learning_rate": 0.0006151219471488673,
572
+ "loss": 0.882,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.17,
577
+ "learning_rate": 0.0006142821042146112,
578
+ "loss": 0.8295,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.17,
583
+ "learning_rate": 0.0006134328571868428,
584
+ "loss": 0.7799,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.17,
589
+ "learning_rate": 0.0006125742336732103,
590
+ "loss": 0.9368,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.17,
595
+ "learning_rate": 0.000611706261586176,
596
+ "loss": 0.8542,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.18,
601
+ "learning_rate": 0.0006108289691421089,
602
+ "loss": 0.9263,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.18,
607
+ "learning_rate": 0.0006099423848603682,
608
+ "loss": 0.8572,
609
+ "step": 100
610
+ }
611
+ ],
612
+ "logging_steps": 1,
613
+ "max_steps": 563,
614
+ "num_input_tokens_seen": 0,
615
+ "num_train_epochs": 1,
616
+ "save_steps": 50,
617
+ "total_flos": 1.5159455254020096e+17,
618
+ "train_batch_size": 3,
619
+ "trial_name": null,
620
+ "trial_params": null
621
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ea8c2168763107e58dd3670b291e1ba16b1e569e4918309b6c5afd8126dffb
3
+ size 4664
checkpoint-150/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: KnutJaegersberg/Qwen-14B-Llamafied
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-150/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "KnutJaegersberg/Qwen-14B-Llamafied",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": "unsloth",
21
+ "target_modules": [
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-150/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3e532468f70fc40993a0766c86f2206abc941e574bf891083ea3d1f5ff15e9e
3
+ size 1994992752
checkpoint-150/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcb69aa5b55fcc07e328f1779663924bf22227e9e8a04df5c6eaa65a4e87f55e
3
+ size 1000056916
checkpoint-150/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-150/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7af0b0c201f93f4ec324169bdb9e2273226573fd5d903d9c59567f8143913943
3
+ size 1064
checkpoint-150/trainer_state.json ADDED
@@ -0,0 +1,921 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.26611472501478417,
5
+ "eval_steps": 500,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5.4166666666666664e-05,
14
+ "loss": 2.8488,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00010833333333333333,
20
+ "loss": 2.7815,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.0001625,
26
+ "loss": 2.8002,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00021666666666666666,
32
+ "loss": 2.7473,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0002708333333333333,
38
+ "loss": 2.4233,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.000325,
44
+ "loss": 1.9676,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 0.00037916666666666665,
50
+ "loss": 1.7562,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 0.0004333333333333333,
56
+ "loss": 1.3949,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004875,
62
+ "loss": 1.2908,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0005416666666666666,
68
+ "loss": 1.2542,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 0.0005958333333333333,
74
+ "loss": 1.2959,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 0.00065,
80
+ "loss": 1.1706,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 0.0006499947173877214,
86
+ "loss": 1.0829,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 0.0006499788697226147,
92
+ "loss": 1.128,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 0.0006499524575198621,
98
+ "loss": 1.0847,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 0.0006499154816380815,
104
+ "loss": 1.1143,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 0.0006498679432792988,
110
+ "loss": 1.0751,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 0.0006498098439889095,
116
+ "loss": 1.179,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 0.0006497411856556275,
122
+ "loss": 1.0327,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 0.0006496619705114241,
128
+ "loss": 1.0672,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 0.0006495722011314557,
134
+ "loss": 1.1625,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 0.0006494718804339797,
140
+ "loss": 1.0751,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 0.0006493610116802598,
146
+ "loss": 0.996,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 0.0006492395984744599,
152
+ "loss": 1.0478,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 0.0006491076447635269,
158
+ "loss": 1.064,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 0.0006489651548370628,
164
+ "loss": 0.9393,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 0.0006488121333271846,
170
+ "loss": 0.9282,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 0.0006486485852083744,
176
+ "loss": 1.0558,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 0.0006484745157973169,
182
+ "loss": 1.0015,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 0.0006482899307527272,
188
+ "loss": 1.0261,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 0.0006480948360751669,
194
+ "loss": 1.0507,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 0.0006478892381068483,
200
+ "loss": 1.0225,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 0.0006476731435314292,
206
+ "loss": 0.9411,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 0.0006474465593737948,
212
+ "loss": 0.9884,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 0.0006472094929998295,
218
+ "loss": 0.9892,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 0.0006469619521161782,
224
+ "loss": 1.0527,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 0.0006467039447699945,
230
+ "loss": 0.969,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 0.0006464354793486803,
236
+ "loss": 1.0009,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 0.0006461565645796124,
242
+ "loss": 1.0068,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 0.0006458672095298589,
248
+ "loss": 0.9626,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 0.0006455674236058847,
254
+ "loss": 0.934,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.07,
259
+ "learning_rate": 0.0006452572165532456,
260
+ "loss": 1.0217,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 0.0006449365984562712,
266
+ "loss": 1.0036,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 0.0006446055797377376,
272
+ "loss": 0.9234,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.08,
277
+ "learning_rate": 0.000644264171158528,
278
+ "loss": 0.9771,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.08,
283
+ "learning_rate": 0.0006439123838172836,
284
+ "loss": 1.013,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 0.0006435502291500418,
290
+ "loss": 0.9154,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 0.0006431777189298656,
296
+ "loss": 0.9098,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 0.0006427948652664599,
302
+ "loss": 0.9243,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.09,
307
+ "learning_rate": 0.0006424016806057781,
308
+ "loss": 0.9162,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.09,
313
+ "learning_rate": 0.0006419981777296182,
314
+ "loss": 0.9538,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.09,
319
+ "learning_rate": 0.0006415843697552062,
320
+ "loss": 0.9454,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.09,
325
+ "learning_rate": 0.0006411602701347703,
326
+ "loss": 0.9296,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 0.0006407258926551036,
332
+ "loss": 0.929,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 0.0006402812514371154,
338
+ "loss": 0.9172,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.1,
343
+ "learning_rate": 0.0006398263609353731,
344
+ "loss": 0.9871,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.1,
349
+ "learning_rate": 0.0006393612359376315,
350
+ "loss": 0.9279,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.1,
355
+ "learning_rate": 0.0006388858915643519,
356
+ "loss": 0.9191,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.1,
361
+ "learning_rate": 0.0006384003432682119,
362
+ "loss": 0.9828,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 0.0006379046068336013,
368
+ "loss": 0.8912,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.11,
373
+ "learning_rate": 0.00063739869837611,
374
+ "loss": 0.9023,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.11,
379
+ "learning_rate": 0.0006368826343420043,
380
+ "loss": 0.9978,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.11,
385
+ "learning_rate": 0.0006363564315076915,
386
+ "loss": 0.9097,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.11,
391
+ "learning_rate": 0.0006358201069791749,
392
+ "loss": 0.8475,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 0.000635273678191498,
398
+ "loss": 0.9763,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.12,
403
+ "learning_rate": 0.000634717162908177,
404
+ "loss": 0.8673,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.12,
409
+ "learning_rate": 0.0006341505792206243,
410
+ "loss": 0.9188,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.12,
415
+ "learning_rate": 0.0006335739455475594,
416
+ "loss": 0.865,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.12,
421
+ "learning_rate": 0.0006329872806344108,
422
+ "loss": 0.9187,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.12,
427
+ "learning_rate": 0.0006323906035527062,
428
+ "loss": 0.887,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.13,
433
+ "learning_rate": 0.0006317839336994531,
434
+ "loss": 0.908,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.13,
439
+ "learning_rate": 0.0006311672907965074,
440
+ "loss": 0.918,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.13,
445
+ "learning_rate": 0.0006305406948899329,
446
+ "loss": 0.9399,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.13,
451
+ "learning_rate": 0.0006299041663493497,
452
+ "loss": 0.9741,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.13,
457
+ "learning_rate": 0.0006292577258672713,
458
+ "loss": 0.8738,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.13,
463
+ "learning_rate": 0.0006286013944584328,
464
+ "loss": 0.9192,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.14,
469
+ "learning_rate": 0.0006279351934591071,
470
+ "loss": 0.8589,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.14,
475
+ "learning_rate": 0.0006272591445264116,
476
+ "loss": 0.955,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.14,
481
+ "learning_rate": 0.0006265732696376042,
482
+ "loss": 0.928,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.14,
487
+ "learning_rate": 0.0006258775910893685,
488
+ "loss": 0.8454,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.14,
493
+ "learning_rate": 0.0006251721314970894,
494
+ "loss": 0.8709,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.15,
499
+ "learning_rate": 0.0006244569137941179,
500
+ "loss": 0.8732,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.15,
505
+ "learning_rate": 0.0006237319612310249,
506
+ "loss": 0.9345,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.15,
511
+ "learning_rate": 0.0006229972973748463,
512
+ "loss": 0.9342,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.15,
517
+ "learning_rate": 0.0006222529461083165,
518
+ "loss": 0.8803,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.15,
523
+ "learning_rate": 0.0006214989316290914,
524
+ "loss": 0.8676,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.15,
529
+ "learning_rate": 0.0006207352784489629,
530
+ "loss": 0.9195,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.16,
535
+ "learning_rate": 0.000619962011393061,
536
+ "loss": 0.9505,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.16,
541
+ "learning_rate": 0.0006191791555990477,
542
+ "loss": 0.8778,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.16,
547
+ "learning_rate": 0.0006183867365162994,
548
+ "loss": 0.9663,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.16,
553
+ "learning_rate": 0.0006175847799050789,
554
+ "loss": 0.9304,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.16,
559
+ "learning_rate": 0.0006167733118356993,
560
+ "loss": 0.9233,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.16,
565
+ "learning_rate": 0.0006159523586876756,
566
+ "loss": 0.9167,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.17,
571
+ "learning_rate": 0.0006151219471488673,
572
+ "loss": 0.882,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.17,
577
+ "learning_rate": 0.0006142821042146112,
578
+ "loss": 0.8295,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.17,
583
+ "learning_rate": 0.0006134328571868428,
584
+ "loss": 0.7799,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.17,
589
+ "learning_rate": 0.0006125742336732103,
590
+ "loss": 0.9368,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.17,
595
+ "learning_rate": 0.000611706261586176,
596
+ "loss": 0.8542,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.18,
601
+ "learning_rate": 0.0006108289691421089,
602
+ "loss": 0.9263,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.18,
607
+ "learning_rate": 0.0006099423848603682,
608
+ "loss": 0.8572,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.18,
613
+ "learning_rate": 0.0006090465375623755,
614
+ "loss": 0.905,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.18,
619
+ "learning_rate": 0.0006081414563706781,
620
+ "loss": 0.8621,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.18,
625
+ "learning_rate": 0.0006072271707080021,
626
+ "loss": 0.8745,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.18,
631
+ "learning_rate": 0.0006063037102962963,
632
+ "loss": 0.928,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.19,
637
+ "learning_rate": 0.0006053711051557658,
638
+ "loss": 0.908,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.19,
643
+ "learning_rate": 0.0006044293856038958,
644
+ "loss": 0.8919,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.19,
649
+ "learning_rate": 0.0006034785822544665,
650
+ "loss": 0.8665,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.19,
655
+ "learning_rate": 0.0006025187260165575,
656
+ "loss": 0.8645,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.19,
661
+ "learning_rate": 0.0006015498480935434,
662
+ "loss": 0.895,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.2,
667
+ "learning_rate": 0.0006005719799820788,
668
+ "loss": 0.892,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.2,
673
+ "learning_rate": 0.0005995851534710752,
674
+ "loss": 0.8843,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.2,
679
+ "learning_rate": 0.0005985894006406671,
680
+ "loss": 0.8114,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.2,
685
+ "learning_rate": 0.0005975847538611689,
686
+ "loss": 0.9086,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.2,
691
+ "learning_rate": 0.0005965712457920233,
692
+ "loss": 0.8644,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.2,
697
+ "learning_rate": 0.000595548909380739,
698
+ "loss": 0.8638,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.21,
703
+ "learning_rate": 0.00059451777786182,
704
+ "loss": 0.8856,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.21,
709
+ "learning_rate": 0.0005934778847556848,
710
+ "loss": 0.8749,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.21,
715
+ "learning_rate": 0.0005924292638675769,
716
+ "loss": 0.8864,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.21,
721
+ "learning_rate": 0.0005913719492864662,
722
+ "loss": 0.8317,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.21,
727
+ "learning_rate": 0.0005903059753839402,
728
+ "loss": 0.8356,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.21,
733
+ "learning_rate": 0.0005892313768130872,
734
+ "loss": 0.784,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.22,
739
+ "learning_rate": 0.0005881481885073694,
740
+ "loss": 0.8377,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.22,
745
+ "learning_rate": 0.0005870564456794872,
746
+ "loss": 0.7854,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.22,
751
+ "learning_rate": 0.0005859561838202349,
752
+ "loss": 0.9538,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.22,
757
+ "learning_rate": 0.0005848474386973468,
758
+ "loss": 0.8268,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.22,
763
+ "learning_rate": 0.0005837302463543341,
764
+ "loss": 0.9009,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.23,
769
+ "learning_rate": 0.000582604643109314,
770
+ "loss": 0.8684,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.23,
775
+ "learning_rate": 0.0005814706655538279,
776
+ "loss": 0.7749,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.23,
781
+ "learning_rate": 0.0005803283505516529,
782
+ "loss": 0.8931,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.23,
787
+ "learning_rate": 0.0005791777352376026,
788
+ "loss": 0.8246,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.23,
793
+ "learning_rate": 0.0005780188570163211,
794
+ "loss": 0.7862,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.23,
799
+ "learning_rate": 0.0005768517535610654,
800
+ "loss": 0.9168,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.24,
805
+ "learning_rate": 0.0005756764628124819,
806
+ "loss": 0.8706,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.24,
811
+ "learning_rate": 0.000574493022977373,
812
+ "loss": 0.7976,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.24,
817
+ "learning_rate": 0.000573301472527454,
818
+ "loss": 0.814,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.24,
823
+ "learning_rate": 0.000572101850198104,
824
+ "loss": 0.8991,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.24,
829
+ "learning_rate": 0.0005708941949871053,
830
+ "loss": 0.8539,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.24,
835
+ "learning_rate": 0.0005696785461533761,
836
+ "loss": 0.9107,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.25,
841
+ "learning_rate": 0.0005684549432156948,
842
+ "loss": 0.9165,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.25,
847
+ "learning_rate": 0.0005672234259514147,
848
+ "loss": 0.843,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.25,
853
+ "learning_rate": 0.000565984034395171,
854
+ "loss": 0.8328,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.25,
859
+ "learning_rate": 0.0005647368088375792,
860
+ "loss": 0.884,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.25,
865
+ "learning_rate": 0.000563481789823926,
866
+ "loss": 0.9101,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.26,
871
+ "learning_rate": 0.0005622190181528502,
872
+ "loss": 0.8508,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.26,
877
+ "learning_rate": 0.0005609485348750175,
878
+ "loss": 0.8575,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.26,
883
+ "learning_rate": 0.0005596703812917851,
884
+ "loss": 0.8861,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.26,
889
+ "learning_rate": 0.0005583845989538596,
890
+ "loss": 0.8163,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.26,
895
+ "learning_rate": 0.0005570912296599459,
896
+ "loss": 0.8583,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.26,
901
+ "learning_rate": 0.0005557903154553888,
902
+ "loss": 0.8635,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.27,
907
+ "learning_rate": 0.000554481898630806,
908
+ "loss": 0.811,
909
+ "step": 150
910
+ }
911
+ ],
912
+ "logging_steps": 1,
913
+ "max_steps": 563,
914
+ "num_input_tokens_seen": 0,
915
+ "num_train_epochs": 1,
916
+ "save_steps": 50,
917
+ "total_flos": 2.2743182526234624e+17,
918
+ "train_batch_size": 3,
919
+ "trial_name": null,
920
+ "trial_params": null
921
+ }
checkpoint-150/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ea8c2168763107e58dd3670b291e1ba16b1e569e4918309b6c5afd8126dffb
3
+ size 4664
checkpoint-200/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: KnutJaegersberg/Qwen-14B-Llamafied
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "KnutJaegersberg/Qwen-14B-Llamafied",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": "unsloth",
21
+ "target_modules": [
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e177b9504a2e90b1e2795b4c779f1a993483244c8259ca3a1c100834bbf16181
3
+ size 1994992752
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79ba4ec69028c97448d4b6a16192ed8d194d481dde2f836ed82d9e001d221100
3
+ size 1000056916
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d33885705a637a6a415586031f20a573b7b96ba9589118ef9e1bdeb698af4d2d
3
+ size 1064
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.35481963335304556,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5.4166666666666664e-05,
14
+ "loss": 2.8488,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00010833333333333333,
20
+ "loss": 2.7815,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.0001625,
26
+ "loss": 2.8002,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00021666666666666666,
32
+ "loss": 2.7473,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0002708333333333333,
38
+ "loss": 2.4233,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.000325,
44
+ "loss": 1.9676,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 0.00037916666666666665,
50
+ "loss": 1.7562,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 0.0004333333333333333,
56
+ "loss": 1.3949,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004875,
62
+ "loss": 1.2908,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0005416666666666666,
68
+ "loss": 1.2542,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 0.0005958333333333333,
74
+ "loss": 1.2959,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 0.00065,
80
+ "loss": 1.1706,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 0.0006499947173877214,
86
+ "loss": 1.0829,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 0.0006499788697226147,
92
+ "loss": 1.128,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 0.0006499524575198621,
98
+ "loss": 1.0847,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 0.0006499154816380815,
104
+ "loss": 1.1143,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 0.0006498679432792988,
110
+ "loss": 1.0751,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 0.0006498098439889095,
116
+ "loss": 1.179,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 0.0006497411856556275,
122
+ "loss": 1.0327,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 0.0006496619705114241,
128
+ "loss": 1.0672,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 0.0006495722011314557,
134
+ "loss": 1.1625,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 0.0006494718804339797,
140
+ "loss": 1.0751,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 0.0006493610116802598,
146
+ "loss": 0.996,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 0.0006492395984744599,
152
+ "loss": 1.0478,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 0.0006491076447635269,
158
+ "loss": 1.064,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 0.0006489651548370628,
164
+ "loss": 0.9393,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 0.0006488121333271846,
170
+ "loss": 0.9282,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 0.0006486485852083744,
176
+ "loss": 1.0558,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 0.0006484745157973169,
182
+ "loss": 1.0015,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 0.0006482899307527272,
188
+ "loss": 1.0261,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 0.0006480948360751669,
194
+ "loss": 1.0507,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 0.0006478892381068483,
200
+ "loss": 1.0225,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 0.0006476731435314292,
206
+ "loss": 0.9411,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 0.0006474465593737948,
212
+ "loss": 0.9884,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 0.0006472094929998295,
218
+ "loss": 0.9892,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 0.0006469619521161782,
224
+ "loss": 1.0527,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 0.0006467039447699945,
230
+ "loss": 0.969,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 0.0006464354793486803,
236
+ "loss": 1.0009,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 0.0006461565645796124,
242
+ "loss": 1.0068,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 0.0006458672095298589,
248
+ "loss": 0.9626,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 0.0006455674236058847,
254
+ "loss": 0.934,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.07,
259
+ "learning_rate": 0.0006452572165532456,
260
+ "loss": 1.0217,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 0.0006449365984562712,
266
+ "loss": 1.0036,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 0.0006446055797377376,
272
+ "loss": 0.9234,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.08,
277
+ "learning_rate": 0.000644264171158528,
278
+ "loss": 0.9771,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.08,
283
+ "learning_rate": 0.0006439123838172836,
284
+ "loss": 1.013,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 0.0006435502291500418,
290
+ "loss": 0.9154,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 0.0006431777189298656,
296
+ "loss": 0.9098,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 0.0006427948652664599,
302
+ "loss": 0.9243,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.09,
307
+ "learning_rate": 0.0006424016806057781,
308
+ "loss": 0.9162,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.09,
313
+ "learning_rate": 0.0006419981777296182,
314
+ "loss": 0.9538,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.09,
319
+ "learning_rate": 0.0006415843697552062,
320
+ "loss": 0.9454,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.09,
325
+ "learning_rate": 0.0006411602701347703,
326
+ "loss": 0.9296,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 0.0006407258926551036,
332
+ "loss": 0.929,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 0.0006402812514371154,
338
+ "loss": 0.9172,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.1,
343
+ "learning_rate": 0.0006398263609353731,
344
+ "loss": 0.9871,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.1,
349
+ "learning_rate": 0.0006393612359376315,
350
+ "loss": 0.9279,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.1,
355
+ "learning_rate": 0.0006388858915643519,
356
+ "loss": 0.9191,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.1,
361
+ "learning_rate": 0.0006384003432682119,
362
+ "loss": 0.9828,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 0.0006379046068336013,
368
+ "loss": 0.8912,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.11,
373
+ "learning_rate": 0.00063739869837611,
374
+ "loss": 0.9023,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.11,
379
+ "learning_rate": 0.0006368826343420043,
380
+ "loss": 0.9978,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.11,
385
+ "learning_rate": 0.0006363564315076915,
386
+ "loss": 0.9097,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.11,
391
+ "learning_rate": 0.0006358201069791749,
392
+ "loss": 0.8475,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 0.000635273678191498,
398
+ "loss": 0.9763,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.12,
403
+ "learning_rate": 0.000634717162908177,
404
+ "loss": 0.8673,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.12,
409
+ "learning_rate": 0.0006341505792206243,
410
+ "loss": 0.9188,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.12,
415
+ "learning_rate": 0.0006335739455475594,
416
+ "loss": 0.865,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.12,
421
+ "learning_rate": 0.0006329872806344108,
422
+ "loss": 0.9187,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.12,
427
+ "learning_rate": 0.0006323906035527062,
428
+ "loss": 0.887,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.13,
433
+ "learning_rate": 0.0006317839336994531,
434
+ "loss": 0.908,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.13,
439
+ "learning_rate": 0.0006311672907965074,
440
+ "loss": 0.918,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.13,
445
+ "learning_rate": 0.0006305406948899329,
446
+ "loss": 0.9399,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.13,
451
+ "learning_rate": 0.0006299041663493497,
452
+ "loss": 0.9741,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.13,
457
+ "learning_rate": 0.0006292577258672713,
458
+ "loss": 0.8738,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.13,
463
+ "learning_rate": 0.0006286013944584328,
464
+ "loss": 0.9192,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.14,
469
+ "learning_rate": 0.0006279351934591071,
470
+ "loss": 0.8589,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.14,
475
+ "learning_rate": 0.0006272591445264116,
476
+ "loss": 0.955,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.14,
481
+ "learning_rate": 0.0006265732696376042,
482
+ "loss": 0.928,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.14,
487
+ "learning_rate": 0.0006258775910893685,
488
+ "loss": 0.8454,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.14,
493
+ "learning_rate": 0.0006251721314970894,
494
+ "loss": 0.8709,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.15,
499
+ "learning_rate": 0.0006244569137941179,
500
+ "loss": 0.8732,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.15,
505
+ "learning_rate": 0.0006237319612310249,
506
+ "loss": 0.9345,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.15,
511
+ "learning_rate": 0.0006229972973748463,
512
+ "loss": 0.9342,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.15,
517
+ "learning_rate": 0.0006222529461083165,
518
+ "loss": 0.8803,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.15,
523
+ "learning_rate": 0.0006214989316290914,
524
+ "loss": 0.8676,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.15,
529
+ "learning_rate": 0.0006207352784489629,
530
+ "loss": 0.9195,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.16,
535
+ "learning_rate": 0.000619962011393061,
536
+ "loss": 0.9505,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.16,
541
+ "learning_rate": 0.0006191791555990477,
542
+ "loss": 0.8778,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.16,
547
+ "learning_rate": 0.0006183867365162994,
548
+ "loss": 0.9663,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.16,
553
+ "learning_rate": 0.0006175847799050789,
554
+ "loss": 0.9304,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.16,
559
+ "learning_rate": 0.0006167733118356993,
560
+ "loss": 0.9233,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.16,
565
+ "learning_rate": 0.0006159523586876756,
566
+ "loss": 0.9167,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.17,
571
+ "learning_rate": 0.0006151219471488673,
572
+ "loss": 0.882,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.17,
577
+ "learning_rate": 0.0006142821042146112,
578
+ "loss": 0.8295,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.17,
583
+ "learning_rate": 0.0006134328571868428,
584
+ "loss": 0.7799,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.17,
589
+ "learning_rate": 0.0006125742336732103,
590
+ "loss": 0.9368,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.17,
595
+ "learning_rate": 0.000611706261586176,
596
+ "loss": 0.8542,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.18,
601
+ "learning_rate": 0.0006108289691421089,
602
+ "loss": 0.9263,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.18,
607
+ "learning_rate": 0.0006099423848603682,
608
+ "loss": 0.8572,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.18,
613
+ "learning_rate": 0.0006090465375623755,
614
+ "loss": 0.905,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.18,
619
+ "learning_rate": 0.0006081414563706781,
620
+ "loss": 0.8621,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.18,
625
+ "learning_rate": 0.0006072271707080021,
626
+ "loss": 0.8745,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.18,
631
+ "learning_rate": 0.0006063037102962963,
632
+ "loss": 0.928,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.19,
637
+ "learning_rate": 0.0006053711051557658,
638
+ "loss": 0.908,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.19,
643
+ "learning_rate": 0.0006044293856038958,
644
+ "loss": 0.8919,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.19,
649
+ "learning_rate": 0.0006034785822544665,
650
+ "loss": 0.8665,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.19,
655
+ "learning_rate": 0.0006025187260165575,
656
+ "loss": 0.8645,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.19,
661
+ "learning_rate": 0.0006015498480935434,
662
+ "loss": 0.895,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.2,
667
+ "learning_rate": 0.0006005719799820788,
668
+ "loss": 0.892,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.2,
673
+ "learning_rate": 0.0005995851534710752,
674
+ "loss": 0.8843,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.2,
679
+ "learning_rate": 0.0005985894006406671,
680
+ "loss": 0.8114,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.2,
685
+ "learning_rate": 0.0005975847538611689,
686
+ "loss": 0.9086,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.2,
691
+ "learning_rate": 0.0005965712457920233,
692
+ "loss": 0.8644,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.2,
697
+ "learning_rate": 0.000595548909380739,
698
+ "loss": 0.8638,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.21,
703
+ "learning_rate": 0.00059451777786182,
704
+ "loss": 0.8856,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.21,
709
+ "learning_rate": 0.0005934778847556848,
710
+ "loss": 0.8749,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.21,
715
+ "learning_rate": 0.0005924292638675769,
716
+ "loss": 0.8864,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.21,
721
+ "learning_rate": 0.0005913719492864662,
722
+ "loss": 0.8317,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.21,
727
+ "learning_rate": 0.0005903059753839402,
728
+ "loss": 0.8356,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.21,
733
+ "learning_rate": 0.0005892313768130872,
734
+ "loss": 0.784,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.22,
739
+ "learning_rate": 0.0005881481885073694,
740
+ "loss": 0.8377,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.22,
745
+ "learning_rate": 0.0005870564456794872,
746
+ "loss": 0.7854,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.22,
751
+ "learning_rate": 0.0005859561838202349,
752
+ "loss": 0.9538,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.22,
757
+ "learning_rate": 0.0005848474386973468,
758
+ "loss": 0.8268,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.22,
763
+ "learning_rate": 0.0005837302463543341,
764
+ "loss": 0.9009,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.23,
769
+ "learning_rate": 0.000582604643109314,
770
+ "loss": 0.8684,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.23,
775
+ "learning_rate": 0.0005814706655538279,
776
+ "loss": 0.7749,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.23,
781
+ "learning_rate": 0.0005803283505516529,
782
+ "loss": 0.8931,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.23,
787
+ "learning_rate": 0.0005791777352376026,
788
+ "loss": 0.8246,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.23,
793
+ "learning_rate": 0.0005780188570163211,
794
+ "loss": 0.7862,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.23,
799
+ "learning_rate": 0.0005768517535610654,
800
+ "loss": 0.9168,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.24,
805
+ "learning_rate": 0.0005756764628124819,
806
+ "loss": 0.8706,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.24,
811
+ "learning_rate": 0.000574493022977373,
812
+ "loss": 0.7976,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.24,
817
+ "learning_rate": 0.000573301472527454,
818
+ "loss": 0.814,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.24,
823
+ "learning_rate": 0.000572101850198104,
824
+ "loss": 0.8991,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.24,
829
+ "learning_rate": 0.0005708941949871053,
830
+ "loss": 0.8539,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.24,
835
+ "learning_rate": 0.0005696785461533761,
836
+ "loss": 0.9107,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.25,
841
+ "learning_rate": 0.0005684549432156948,
842
+ "loss": 0.9165,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.25,
847
+ "learning_rate": 0.0005672234259514147,
848
+ "loss": 0.843,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.25,
853
+ "learning_rate": 0.000565984034395171,
854
+ "loss": 0.8328,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.25,
859
+ "learning_rate": 0.0005647368088375792,
860
+ "loss": 0.884,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.25,
865
+ "learning_rate": 0.000563481789823926,
866
+ "loss": 0.9101,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.26,
871
+ "learning_rate": 0.0005622190181528502,
872
+ "loss": 0.8508,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.26,
877
+ "learning_rate": 0.0005609485348750175,
878
+ "loss": 0.8575,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.26,
883
+ "learning_rate": 0.0005596703812917851,
884
+ "loss": 0.8861,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.26,
889
+ "learning_rate": 0.0005583845989538596,
890
+ "loss": 0.8163,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.26,
895
+ "learning_rate": 0.0005570912296599459,
896
+ "loss": 0.8583,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.26,
901
+ "learning_rate": 0.0005557903154553888,
902
+ "loss": 0.8635,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.27,
907
+ "learning_rate": 0.000554481898630806,
908
+ "loss": 0.811,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.27,
913
+ "learning_rate": 0.0005531660217207126,
914
+ "loss": 0.9116,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.27,
919
+ "learning_rate": 0.0005518427275021399,
920
+ "loss": 0.868,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.27,
925
+ "learning_rate": 0.0005505120589932435,
926
+ "loss": 0.8868,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.27,
931
+ "learning_rate": 0.0005491740594519051,
932
+ "loss": 0.8816,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.27,
937
+ "learning_rate": 0.0005478287723743267,
938
+ "loss": 0.8499,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.28,
943
+ "learning_rate": 0.0005464762414936163,
944
+ "loss": 0.8502,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.28,
949
+ "learning_rate": 0.0005451165107783659,
950
+ "loss": 0.86,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.28,
955
+ "learning_rate": 0.0005437496244312228,
956
+ "loss": 0.8669,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.28,
961
+ "learning_rate": 0.0005423756268874522,
962
+ "loss": 0.869,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.28,
967
+ "learning_rate": 0.000540994562813493,
968
+ "loss": 0.8476,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.29,
973
+ "learning_rate": 0.0005396064771055053,
974
+ "loss": 0.7992,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.29,
979
+ "learning_rate": 0.0005382114148879113,
980
+ "loss": 0.8569,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.29,
985
+ "learning_rate": 0.0005368094215119282,
986
+ "loss": 0.8367,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.29,
991
+ "learning_rate": 0.000535400542554094,
992
+ "loss": 0.8455,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.29,
997
+ "learning_rate": 0.0005339848238147857,
998
+ "loss": 0.9209,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.29,
1003
+ "learning_rate": 0.0005325623113167311,
1004
+ "loss": 0.8577,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.3,
1009
+ "learning_rate": 0.0005311330513035111,
1010
+ "loss": 0.8331,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.3,
1015
+ "learning_rate": 0.0005296970902380583,
1016
+ "loss": 0.7925,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.3,
1021
+ "learning_rate": 0.0005282544748011454,
1022
+ "loss": 0.8223,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.3,
1027
+ "learning_rate": 0.0005268052518898676,
1028
+ "loss": 0.8555,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.3,
1033
+ "learning_rate": 0.0005253494686161189,
1034
+ "loss": 0.9448,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.31,
1039
+ "learning_rate": 0.00052388717230506,
1040
+ "loss": 0.8364,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.31,
1045
+ "learning_rate": 0.0005224184104935797,
1046
+ "loss": 0.866,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.31,
1051
+ "learning_rate": 0.0005209432309287499,
1052
+ "loss": 0.8312,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.31,
1057
+ "learning_rate": 0.0005194616815662733,
1058
+ "loss": 0.8725,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.31,
1063
+ "learning_rate": 0.0005179738105689243,
1064
+ "loss": 0.8199,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.31,
1069
+ "learning_rate": 0.0005164796663049834,
1070
+ "loss": 0.8068,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.32,
1075
+ "learning_rate": 0.0005149792973466653,
1076
+ "loss": 0.8533,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.32,
1081
+ "learning_rate": 0.0005134727524685388,
1082
+ "loss": 0.9067,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.32,
1087
+ "learning_rate": 0.0005119600806459426,
1088
+ "loss": 0.8105,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.32,
1093
+ "learning_rate": 0.0005104413310533914,
1094
+ "loss": 0.8426,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.32,
1099
+ "learning_rate": 0.0005089165530629796,
1100
+ "loss": 0.8854,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.32,
1105
+ "learning_rate": 0.0005073857962427743,
1106
+ "loss": 0.8151,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.33,
1111
+ "learning_rate": 0.0005058491103552046,
1112
+ "loss": 0.8467,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.33,
1117
+ "learning_rate": 0.0005043065453554449,
1118
+ "loss": 0.8343,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.33,
1123
+ "learning_rate": 0.0005027581513897888,
1124
+ "loss": 0.8139,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.33,
1129
+ "learning_rate": 0.0005012039787940209,
1130
+ "loss": 0.8632,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.33,
1135
+ "learning_rate": 0.0004996440780917798,
1136
+ "loss": 0.8525,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.34,
1141
+ "learning_rate": 0.0004980784999929151,
1142
+ "loss": 0.9075,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.34,
1147
+ "learning_rate": 0.00049650729539184,
1148
+ "loss": 0.7663,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.34,
1153
+ "learning_rate": 0.0004949305153658755,
1154
+ "loss": 0.82,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.34,
1159
+ "learning_rate": 0.0004933482111735912,
1160
+ "loss": 0.9614,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.34,
1165
+ "learning_rate": 0.0004917604342531381,
1166
+ "loss": 0.8063,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.34,
1171
+ "learning_rate": 0.0004901672362205767,
1172
+ "loss": 0.8729,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.35,
1177
+ "learning_rate": 0.0004885686688681996,
1178
+ "loss": 0.8819,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.35,
1183
+ "learning_rate": 0.0004869647841628468,
1184
+ "loss": 0.7797,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.35,
1189
+ "learning_rate": 0.00048535563424421686,
1190
+ "loss": 0.7435,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.35,
1195
+ "learning_rate": 0.0004837412714231722,
1196
+ "loss": 0.7985,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.35,
1201
+ "learning_rate": 0.00048212174818003796,
1202
+ "loss": 0.8532,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.35,
1207
+ "learning_rate": 0.00048049711716289666,
1208
+ "loss": 0.8559,
1209
+ "step": 200
1210
+ }
1211
+ ],
1212
+ "logging_steps": 1,
1213
+ "max_steps": 563,
1214
+ "num_input_tokens_seen": 0,
1215
+ "num_train_epochs": 1,
1216
+ "save_steps": 50,
1217
+ "total_flos": 3.032690979844915e+17,
1218
+ "train_batch_size": 3,
1219
+ "trial_name": null,
1220
+ "trial_params": null
1221
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ea8c2168763107e58dd3670b291e1ba16b1e569e4918309b6c5afd8126dffb
3
+ size 4664
checkpoint-250/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: KnutJaegersberg/Qwen-14B-Llamafied
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-250/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "KnutJaegersberg/Qwen-14B-Llamafied",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": "unsloth",
21
+ "target_modules": [
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-250/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afbf3b85705e297d95b6de2766a16204c9bfd077bbd74b34e3d37762c4d1f6d3
3
+ size 1994992752
checkpoint-250/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c726bdd3ac465ee4fe83ef0f6f33ac19345fad0954fe1a850b2483406b41a1c5
3
+ size 1000056916
checkpoint-250/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-250/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7fbb992a7e934f17168acd2399e442e2e0d6da17c86b0ff2585c78472a53fb6
3
+ size 1064
checkpoint-250/trainer_state.json ADDED
@@ -0,0 +1,1521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.4435245416913069,
5
+ "eval_steps": 500,
6
+ "global_step": 250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5.4166666666666664e-05,
14
+ "loss": 2.8488,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00010833333333333333,
20
+ "loss": 2.7815,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.0001625,
26
+ "loss": 2.8002,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00021666666666666666,
32
+ "loss": 2.7473,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0002708333333333333,
38
+ "loss": 2.4233,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.000325,
44
+ "loss": 1.9676,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 0.00037916666666666665,
50
+ "loss": 1.7562,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 0.0004333333333333333,
56
+ "loss": 1.3949,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004875,
62
+ "loss": 1.2908,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0005416666666666666,
68
+ "loss": 1.2542,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 0.0005958333333333333,
74
+ "loss": 1.2959,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 0.00065,
80
+ "loss": 1.1706,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 0.0006499947173877214,
86
+ "loss": 1.0829,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 0.0006499788697226147,
92
+ "loss": 1.128,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 0.0006499524575198621,
98
+ "loss": 1.0847,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 0.0006499154816380815,
104
+ "loss": 1.1143,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 0.0006498679432792988,
110
+ "loss": 1.0751,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 0.0006498098439889095,
116
+ "loss": 1.179,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 0.0006497411856556275,
122
+ "loss": 1.0327,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 0.0006496619705114241,
128
+ "loss": 1.0672,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 0.0006495722011314557,
134
+ "loss": 1.1625,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 0.0006494718804339797,
140
+ "loss": 1.0751,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 0.0006493610116802598,
146
+ "loss": 0.996,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 0.0006492395984744599,
152
+ "loss": 1.0478,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 0.0006491076447635269,
158
+ "loss": 1.064,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 0.0006489651548370628,
164
+ "loss": 0.9393,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 0.0006488121333271846,
170
+ "loss": 0.9282,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 0.0006486485852083744,
176
+ "loss": 1.0558,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 0.0006484745157973169,
182
+ "loss": 1.0015,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 0.0006482899307527272,
188
+ "loss": 1.0261,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 0.0006480948360751669,
194
+ "loss": 1.0507,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 0.0006478892381068483,
200
+ "loss": 1.0225,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 0.0006476731435314292,
206
+ "loss": 0.9411,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 0.0006474465593737948,
212
+ "loss": 0.9884,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 0.0006472094929998295,
218
+ "loss": 0.9892,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 0.0006469619521161782,
224
+ "loss": 1.0527,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 0.0006467039447699945,
230
+ "loss": 0.969,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 0.0006464354793486803,
236
+ "loss": 1.0009,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 0.0006461565645796124,
242
+ "loss": 1.0068,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 0.0006458672095298589,
248
+ "loss": 0.9626,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 0.0006455674236058847,
254
+ "loss": 0.934,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.07,
259
+ "learning_rate": 0.0006452572165532456,
260
+ "loss": 1.0217,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 0.0006449365984562712,
266
+ "loss": 1.0036,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 0.0006446055797377376,
272
+ "loss": 0.9234,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.08,
277
+ "learning_rate": 0.000644264171158528,
278
+ "loss": 0.9771,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.08,
283
+ "learning_rate": 0.0006439123838172836,
284
+ "loss": 1.013,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 0.0006435502291500418,
290
+ "loss": 0.9154,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 0.0006431777189298656,
296
+ "loss": 0.9098,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 0.0006427948652664599,
302
+ "loss": 0.9243,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.09,
307
+ "learning_rate": 0.0006424016806057781,
308
+ "loss": 0.9162,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.09,
313
+ "learning_rate": 0.0006419981777296182,
314
+ "loss": 0.9538,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.09,
319
+ "learning_rate": 0.0006415843697552062,
320
+ "loss": 0.9454,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.09,
325
+ "learning_rate": 0.0006411602701347703,
326
+ "loss": 0.9296,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 0.0006407258926551036,
332
+ "loss": 0.929,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 0.0006402812514371154,
338
+ "loss": 0.9172,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.1,
343
+ "learning_rate": 0.0006398263609353731,
344
+ "loss": 0.9871,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.1,
349
+ "learning_rate": 0.0006393612359376315,
350
+ "loss": 0.9279,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.1,
355
+ "learning_rate": 0.0006388858915643519,
356
+ "loss": 0.9191,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.1,
361
+ "learning_rate": 0.0006384003432682119,
362
+ "loss": 0.9828,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 0.0006379046068336013,
368
+ "loss": 0.8912,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.11,
373
+ "learning_rate": 0.00063739869837611,
374
+ "loss": 0.9023,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.11,
379
+ "learning_rate": 0.0006368826343420043,
380
+ "loss": 0.9978,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.11,
385
+ "learning_rate": 0.0006363564315076915,
386
+ "loss": 0.9097,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.11,
391
+ "learning_rate": 0.0006358201069791749,
392
+ "loss": 0.8475,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 0.000635273678191498,
398
+ "loss": 0.9763,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.12,
403
+ "learning_rate": 0.000634717162908177,
404
+ "loss": 0.8673,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.12,
409
+ "learning_rate": 0.0006341505792206243,
410
+ "loss": 0.9188,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.12,
415
+ "learning_rate": 0.0006335739455475594,
416
+ "loss": 0.865,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.12,
421
+ "learning_rate": 0.0006329872806344108,
422
+ "loss": 0.9187,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.12,
427
+ "learning_rate": 0.0006323906035527062,
428
+ "loss": 0.887,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.13,
433
+ "learning_rate": 0.0006317839336994531,
434
+ "loss": 0.908,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.13,
439
+ "learning_rate": 0.0006311672907965074,
440
+ "loss": 0.918,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.13,
445
+ "learning_rate": 0.0006305406948899329,
446
+ "loss": 0.9399,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.13,
451
+ "learning_rate": 0.0006299041663493497,
452
+ "loss": 0.9741,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.13,
457
+ "learning_rate": 0.0006292577258672713,
458
+ "loss": 0.8738,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.13,
463
+ "learning_rate": 0.0006286013944584328,
464
+ "loss": 0.9192,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.14,
469
+ "learning_rate": 0.0006279351934591071,
470
+ "loss": 0.8589,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.14,
475
+ "learning_rate": 0.0006272591445264116,
476
+ "loss": 0.955,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.14,
481
+ "learning_rate": 0.0006265732696376042,
482
+ "loss": 0.928,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.14,
487
+ "learning_rate": 0.0006258775910893685,
488
+ "loss": 0.8454,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.14,
493
+ "learning_rate": 0.0006251721314970894,
494
+ "loss": 0.8709,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.15,
499
+ "learning_rate": 0.0006244569137941179,
500
+ "loss": 0.8732,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.15,
505
+ "learning_rate": 0.0006237319612310249,
506
+ "loss": 0.9345,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.15,
511
+ "learning_rate": 0.0006229972973748463,
512
+ "loss": 0.9342,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.15,
517
+ "learning_rate": 0.0006222529461083165,
518
+ "loss": 0.8803,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.15,
523
+ "learning_rate": 0.0006214989316290914,
524
+ "loss": 0.8676,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.15,
529
+ "learning_rate": 0.0006207352784489629,
530
+ "loss": 0.9195,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.16,
535
+ "learning_rate": 0.000619962011393061,
536
+ "loss": 0.9505,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.16,
541
+ "learning_rate": 0.0006191791555990477,
542
+ "loss": 0.8778,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.16,
547
+ "learning_rate": 0.0006183867365162994,
548
+ "loss": 0.9663,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.16,
553
+ "learning_rate": 0.0006175847799050789,
554
+ "loss": 0.9304,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.16,
559
+ "learning_rate": 0.0006167733118356993,
560
+ "loss": 0.9233,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.16,
565
+ "learning_rate": 0.0006159523586876756,
566
+ "loss": 0.9167,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.17,
571
+ "learning_rate": 0.0006151219471488673,
572
+ "loss": 0.882,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.17,
577
+ "learning_rate": 0.0006142821042146112,
578
+ "loss": 0.8295,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.17,
583
+ "learning_rate": 0.0006134328571868428,
584
+ "loss": 0.7799,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.17,
589
+ "learning_rate": 0.0006125742336732103,
590
+ "loss": 0.9368,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.17,
595
+ "learning_rate": 0.000611706261586176,
596
+ "loss": 0.8542,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.18,
601
+ "learning_rate": 0.0006108289691421089,
602
+ "loss": 0.9263,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.18,
607
+ "learning_rate": 0.0006099423848603682,
608
+ "loss": 0.8572,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.18,
613
+ "learning_rate": 0.0006090465375623755,
614
+ "loss": 0.905,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.18,
619
+ "learning_rate": 0.0006081414563706781,
620
+ "loss": 0.8621,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.18,
625
+ "learning_rate": 0.0006072271707080021,
626
+ "loss": 0.8745,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.18,
631
+ "learning_rate": 0.0006063037102962963,
632
+ "loss": 0.928,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.19,
637
+ "learning_rate": 0.0006053711051557658,
638
+ "loss": 0.908,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.19,
643
+ "learning_rate": 0.0006044293856038958,
644
+ "loss": 0.8919,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.19,
649
+ "learning_rate": 0.0006034785822544665,
650
+ "loss": 0.8665,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.19,
655
+ "learning_rate": 0.0006025187260165575,
656
+ "loss": 0.8645,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.19,
661
+ "learning_rate": 0.0006015498480935434,
662
+ "loss": 0.895,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.2,
667
+ "learning_rate": 0.0006005719799820788,
668
+ "loss": 0.892,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.2,
673
+ "learning_rate": 0.0005995851534710752,
674
+ "loss": 0.8843,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.2,
679
+ "learning_rate": 0.0005985894006406671,
680
+ "loss": 0.8114,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.2,
685
+ "learning_rate": 0.0005975847538611689,
686
+ "loss": 0.9086,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.2,
691
+ "learning_rate": 0.0005965712457920233,
692
+ "loss": 0.8644,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.2,
697
+ "learning_rate": 0.000595548909380739,
698
+ "loss": 0.8638,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.21,
703
+ "learning_rate": 0.00059451777786182,
704
+ "loss": 0.8856,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.21,
709
+ "learning_rate": 0.0005934778847556848,
710
+ "loss": 0.8749,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.21,
715
+ "learning_rate": 0.0005924292638675769,
716
+ "loss": 0.8864,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.21,
721
+ "learning_rate": 0.0005913719492864662,
722
+ "loss": 0.8317,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.21,
727
+ "learning_rate": 0.0005903059753839402,
728
+ "loss": 0.8356,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.21,
733
+ "learning_rate": 0.0005892313768130872,
734
+ "loss": 0.784,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.22,
739
+ "learning_rate": 0.0005881481885073694,
740
+ "loss": 0.8377,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.22,
745
+ "learning_rate": 0.0005870564456794872,
746
+ "loss": 0.7854,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.22,
751
+ "learning_rate": 0.0005859561838202349,
752
+ "loss": 0.9538,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.22,
757
+ "learning_rate": 0.0005848474386973468,
758
+ "loss": 0.8268,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.22,
763
+ "learning_rate": 0.0005837302463543341,
764
+ "loss": 0.9009,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.23,
769
+ "learning_rate": 0.000582604643109314,
770
+ "loss": 0.8684,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.23,
775
+ "learning_rate": 0.0005814706655538279,
776
+ "loss": 0.7749,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.23,
781
+ "learning_rate": 0.0005803283505516529,
782
+ "loss": 0.8931,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.23,
787
+ "learning_rate": 0.0005791777352376026,
788
+ "loss": 0.8246,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.23,
793
+ "learning_rate": 0.0005780188570163211,
794
+ "loss": 0.7862,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.23,
799
+ "learning_rate": 0.0005768517535610654,
800
+ "loss": 0.9168,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.24,
805
+ "learning_rate": 0.0005756764628124819,
806
+ "loss": 0.8706,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.24,
811
+ "learning_rate": 0.000574493022977373,
812
+ "loss": 0.7976,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.24,
817
+ "learning_rate": 0.000573301472527454,
818
+ "loss": 0.814,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.24,
823
+ "learning_rate": 0.000572101850198104,
824
+ "loss": 0.8991,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.24,
829
+ "learning_rate": 0.0005708941949871053,
830
+ "loss": 0.8539,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.24,
835
+ "learning_rate": 0.0005696785461533761,
836
+ "loss": 0.9107,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.25,
841
+ "learning_rate": 0.0005684549432156948,
842
+ "loss": 0.9165,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.25,
847
+ "learning_rate": 0.0005672234259514147,
848
+ "loss": 0.843,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.25,
853
+ "learning_rate": 0.000565984034395171,
854
+ "loss": 0.8328,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.25,
859
+ "learning_rate": 0.0005647368088375792,
860
+ "loss": 0.884,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.25,
865
+ "learning_rate": 0.000563481789823926,
866
+ "loss": 0.9101,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.26,
871
+ "learning_rate": 0.0005622190181528502,
872
+ "loss": 0.8508,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.26,
877
+ "learning_rate": 0.0005609485348750175,
878
+ "loss": 0.8575,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.26,
883
+ "learning_rate": 0.0005596703812917851,
884
+ "loss": 0.8861,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.26,
889
+ "learning_rate": 0.0005583845989538596,
890
+ "loss": 0.8163,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.26,
895
+ "learning_rate": 0.0005570912296599459,
896
+ "loss": 0.8583,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.26,
901
+ "learning_rate": 0.0005557903154553888,
902
+ "loss": 0.8635,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.27,
907
+ "learning_rate": 0.000554481898630806,
908
+ "loss": 0.811,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.27,
913
+ "learning_rate": 0.0005531660217207126,
914
+ "loss": 0.9116,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.27,
919
+ "learning_rate": 0.0005518427275021399,
920
+ "loss": 0.868,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.27,
925
+ "learning_rate": 0.0005505120589932435,
926
+ "loss": 0.8868,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.27,
931
+ "learning_rate": 0.0005491740594519051,
932
+ "loss": 0.8816,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.27,
937
+ "learning_rate": 0.0005478287723743267,
938
+ "loss": 0.8499,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.28,
943
+ "learning_rate": 0.0005464762414936163,
944
+ "loss": 0.8502,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.28,
949
+ "learning_rate": 0.0005451165107783659,
950
+ "loss": 0.86,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.28,
955
+ "learning_rate": 0.0005437496244312228,
956
+ "loss": 0.8669,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.28,
961
+ "learning_rate": 0.0005423756268874522,
962
+ "loss": 0.869,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.28,
967
+ "learning_rate": 0.000540994562813493,
968
+ "loss": 0.8476,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.29,
973
+ "learning_rate": 0.0005396064771055053,
974
+ "loss": 0.7992,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.29,
979
+ "learning_rate": 0.0005382114148879113,
980
+ "loss": 0.8569,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.29,
985
+ "learning_rate": 0.0005368094215119282,
986
+ "loss": 0.8367,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.29,
991
+ "learning_rate": 0.000535400542554094,
992
+ "loss": 0.8455,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.29,
997
+ "learning_rate": 0.0005339848238147857,
998
+ "loss": 0.9209,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.29,
1003
+ "learning_rate": 0.0005325623113167311,
1004
+ "loss": 0.8577,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.3,
1009
+ "learning_rate": 0.0005311330513035111,
1010
+ "loss": 0.8331,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.3,
1015
+ "learning_rate": 0.0005296970902380583,
1016
+ "loss": 0.7925,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.3,
1021
+ "learning_rate": 0.0005282544748011454,
1022
+ "loss": 0.8223,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.3,
1027
+ "learning_rate": 0.0005268052518898676,
1028
+ "loss": 0.8555,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.3,
1033
+ "learning_rate": 0.0005253494686161189,
1034
+ "loss": 0.9448,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.31,
1039
+ "learning_rate": 0.00052388717230506,
1040
+ "loss": 0.8364,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.31,
1045
+ "learning_rate": 0.0005224184104935797,
1046
+ "loss": 0.866,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.31,
1051
+ "learning_rate": 0.0005209432309287499,
1052
+ "loss": 0.8312,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.31,
1057
+ "learning_rate": 0.0005194616815662733,
1058
+ "loss": 0.8725,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.31,
1063
+ "learning_rate": 0.0005179738105689243,
1064
+ "loss": 0.8199,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.31,
1069
+ "learning_rate": 0.0005164796663049834,
1070
+ "loss": 0.8068,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.32,
1075
+ "learning_rate": 0.0005149792973466653,
1076
+ "loss": 0.8533,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.32,
1081
+ "learning_rate": 0.0005134727524685388,
1082
+ "loss": 0.9067,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.32,
1087
+ "learning_rate": 0.0005119600806459426,
1088
+ "loss": 0.8105,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.32,
1093
+ "learning_rate": 0.0005104413310533914,
1094
+ "loss": 0.8426,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.32,
1099
+ "learning_rate": 0.0005089165530629796,
1100
+ "loss": 0.8854,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.32,
1105
+ "learning_rate": 0.0005073857962427743,
1106
+ "loss": 0.8151,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.33,
1111
+ "learning_rate": 0.0005058491103552046,
1112
+ "loss": 0.8467,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.33,
1117
+ "learning_rate": 0.0005043065453554449,
1118
+ "loss": 0.8343,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.33,
1123
+ "learning_rate": 0.0005027581513897888,
1124
+ "loss": 0.8139,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.33,
1129
+ "learning_rate": 0.0005012039787940209,
1130
+ "loss": 0.8632,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.33,
1135
+ "learning_rate": 0.0004996440780917798,
1136
+ "loss": 0.8525,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.34,
1141
+ "learning_rate": 0.0004980784999929151,
1142
+ "loss": 0.9075,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.34,
1147
+ "learning_rate": 0.00049650729539184,
1148
+ "loss": 0.7663,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.34,
1153
+ "learning_rate": 0.0004949305153658755,
1154
+ "loss": 0.82,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.34,
1159
+ "learning_rate": 0.0004933482111735912,
1160
+ "loss": 0.9614,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.34,
1165
+ "learning_rate": 0.0004917604342531381,
1166
+ "loss": 0.8063,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.34,
1171
+ "learning_rate": 0.0004901672362205767,
1172
+ "loss": 0.8729,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.35,
1177
+ "learning_rate": 0.0004885686688681996,
1178
+ "loss": 0.8819,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.35,
1183
+ "learning_rate": 0.0004869647841628468,
1184
+ "loss": 0.7797,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.35,
1189
+ "learning_rate": 0.00048535563424421686,
1190
+ "loss": 0.7435,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.35,
1195
+ "learning_rate": 0.0004837412714231722,
1196
+ "loss": 0.7985,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.35,
1201
+ "learning_rate": 0.00048212174818003796,
1202
+ "loss": 0.8532,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.35,
1207
+ "learning_rate": 0.00048049711716289666,
1208
+ "loss": 0.8559,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.36,
1213
+ "learning_rate": 0.0004788674311858757,
1214
+ "loss": 0.818,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.36,
1219
+ "learning_rate": 0.00047723274322743176,
1220
+ "loss": 0.8423,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.36,
1225
+ "learning_rate": 0.00047559310642862737,
1226
+ "loss": 0.8352,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.36,
1231
+ "learning_rate": 0.00047394857409140383,
1232
+ "loss": 0.8056,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.36,
1237
+ "learning_rate": 0.00047229919967684887,
1238
+ "loss": 0.8196,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.37,
1243
+ "learning_rate": 0.0004706450368034578,
1244
+ "loss": 0.8858,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.37,
1249
+ "learning_rate": 0.00046898613924539154,
1250
+ "loss": 0.8701,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.37,
1255
+ "learning_rate": 0.0004673225609307275,
1256
+ "loss": 0.8912,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.37,
1261
+ "learning_rate": 0.00046565435593970737,
1262
+ "loss": 0.8082,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.37,
1267
+ "learning_rate": 0.000463981578502978,
1268
+ "loss": 0.8062,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.37,
1273
+ "learning_rate": 0.0004623042829998296,
1274
+ "loss": 0.8533,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.38,
1279
+ "learning_rate": 0.00046062252395642723,
1280
+ "loss": 0.7499,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.38,
1285
+ "learning_rate": 0.0004589363560440383,
1286
+ "loss": 0.881,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.38,
1291
+ "learning_rate": 0.00045724583407725556,
1292
+ "loss": 0.9066,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.38,
1297
+ "learning_rate": 0.0004555510130122151,
1298
+ "loss": 0.7825,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.38,
1303
+ "learning_rate": 0.0004538519479448095,
1304
+ "loss": 0.8257,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.38,
1309
+ "learning_rate": 0.00045214869410889724,
1310
+ "loss": 0.7501,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.39,
1315
+ "learning_rate": 0.0004504413068745068,
1316
+ "loss": 0.8188,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.39,
1321
+ "learning_rate": 0.0004487298417460368,
1322
+ "loss": 0.8416,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.39,
1327
+ "learning_rate": 0.00044701435436045133,
1328
+ "loss": 0.7909,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.39,
1333
+ "learning_rate": 0.0004452949004854722,
1334
+ "loss": 0.8351,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.39,
1339
+ "learning_rate": 0.00044357153601776454,
1340
+ "loss": 0.7758,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.4,
1345
+ "learning_rate": 0.0004418443169811211,
1346
+ "loss": 0.8534,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.4,
1351
+ "learning_rate": 0.00044011329952464045,
1352
+ "loss": 0.8572,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.4,
1357
+ "learning_rate": 0.00043837853992090124,
1358
+ "loss": 0.8721,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.4,
1363
+ "learning_rate": 0.00043664009456413367,
1364
+ "loss": 0.7843,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.4,
1369
+ "learning_rate": 0.0004348980199683856,
1370
+ "loss": 0.8812,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.4,
1375
+ "learning_rate": 0.0004331523727656857,
1376
+ "loss": 0.8069,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.41,
1381
+ "learning_rate": 0.0004314032097042021,
1382
+ "loss": 0.7687,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.41,
1387
+ "learning_rate": 0.00042965058764639813,
1388
+ "loss": 0.8415,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.41,
1393
+ "learning_rate": 0.00042789456356718343,
1394
+ "loss": 0.7969,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.41,
1399
+ "learning_rate": 0.0004261351945520616,
1400
+ "loss": 0.7946,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.41,
1405
+ "learning_rate": 0.00042437253779527485,
1406
+ "loss": 0.7948,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.42,
1411
+ "learning_rate": 0.00042260665059794467,
1412
+ "loss": 0.8782,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.42,
1417
+ "learning_rate": 0.0004208375903662087,
1418
+ "loss": 0.7703,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.42,
1423
+ "learning_rate": 0.00041906541460935524,
1424
+ "loss": 0.8175,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.42,
1429
+ "learning_rate": 0.0004172901809379527,
1430
+ "loss": 0.8762,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.42,
1435
+ "learning_rate": 0.0004155119470619779,
1436
+ "loss": 0.7611,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.42,
1441
+ "learning_rate": 0.00041373077078893887,
1442
+ "loss": 0.8024,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.43,
1447
+ "learning_rate": 0.0004119467100219968,
1448
+ "loss": 0.8315,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.43,
1453
+ "learning_rate": 0.0004101598227580827,
1454
+ "loss": 0.8179,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.43,
1459
+ "learning_rate": 0.0004083701670860126,
1460
+ "loss": 0.7895,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.43,
1465
+ "learning_rate": 0.0004065778011845991,
1466
+ "loss": 0.8286,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.43,
1471
+ "learning_rate": 0.0004047827833207597,
1472
+ "loss": 0.7763,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.43,
1477
+ "learning_rate": 0.0004029851718476232,
1478
+ "loss": 0.8347,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.44,
1483
+ "learning_rate": 0.0004011850252026321,
1484
+ "loss": 0.8407,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.44,
1489
+ "learning_rate": 0.0003993824019056437,
1490
+ "loss": 0.6947,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.44,
1495
+ "learning_rate": 0.0003975773605570268,
1496
+ "loss": 0.8137,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.44,
1501
+ "learning_rate": 0.0003957699598357574,
1502
+ "loss": 0.7397,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.44,
1507
+ "learning_rate": 0.00039396025849751105,
1508
+ "loss": 0.7993,
1509
+ "step": 250
1510
+ }
1511
+ ],
1512
+ "logging_steps": 1,
1513
+ "max_steps": 563,
1514
+ "num_input_tokens_seen": 0,
1515
+ "num_train_epochs": 1,
1516
+ "save_steps": 50,
1517
+ "total_flos": 3.7909837141622784e+17,
1518
+ "train_batch_size": 3,
1519
+ "trial_name": null,
1520
+ "trial_params": null
1521
+ }
checkpoint-250/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ea8c2168763107e58dd3670b291e1ba16b1e569e4918309b6c5afd8126dffb
3
+ size 4664
checkpoint-300/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: KnutJaegersberg/Qwen-14B-Llamafied
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-300/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "KnutJaegersberg/Qwen-14B-Llamafied",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": "unsloth",
21
+ "target_modules": [
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-300/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca5e86d737fb6ecd1b36f8966fb42e6179d69b035c61649119ca0e01cfb0e05c
3
+ size 1994992752
checkpoint-300/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cae62760cd3e472ec2ab78b1a666fc09c3f799b9cfb3e9da31f87bc94588f78
3
+ size 1000057492
checkpoint-300/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-300/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fc4088343d67cc271d6a2c7992b384305dbe9ee805e22cf5eb32fc66a0bc838
3
+ size 1064
checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,1821 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.5322294500295683,
5
+ "eval_steps": 500,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5.4166666666666664e-05,
14
+ "loss": 2.8488,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00010833333333333333,
20
+ "loss": 2.7815,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.0001625,
26
+ "loss": 2.8002,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00021666666666666666,
32
+ "loss": 2.7473,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0002708333333333333,
38
+ "loss": 2.4233,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.000325,
44
+ "loss": 1.9676,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 0.00037916666666666665,
50
+ "loss": 1.7562,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 0.0004333333333333333,
56
+ "loss": 1.3949,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004875,
62
+ "loss": 1.2908,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0005416666666666666,
68
+ "loss": 1.2542,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 0.0005958333333333333,
74
+ "loss": 1.2959,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 0.00065,
80
+ "loss": 1.1706,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 0.0006499947173877214,
86
+ "loss": 1.0829,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 0.0006499788697226147,
92
+ "loss": 1.128,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 0.0006499524575198621,
98
+ "loss": 1.0847,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 0.0006499154816380815,
104
+ "loss": 1.1143,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 0.0006498679432792988,
110
+ "loss": 1.0751,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 0.0006498098439889095,
116
+ "loss": 1.179,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 0.0006497411856556275,
122
+ "loss": 1.0327,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 0.0006496619705114241,
128
+ "loss": 1.0672,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 0.0006495722011314557,
134
+ "loss": 1.1625,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 0.0006494718804339797,
140
+ "loss": 1.0751,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 0.0006493610116802598,
146
+ "loss": 0.996,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 0.0006492395984744599,
152
+ "loss": 1.0478,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 0.0006491076447635269,
158
+ "loss": 1.064,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 0.0006489651548370628,
164
+ "loss": 0.9393,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 0.0006488121333271846,
170
+ "loss": 0.9282,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 0.0006486485852083744,
176
+ "loss": 1.0558,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 0.0006484745157973169,
182
+ "loss": 1.0015,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 0.0006482899307527272,
188
+ "loss": 1.0261,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 0.0006480948360751669,
194
+ "loss": 1.0507,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 0.0006478892381068483,
200
+ "loss": 1.0225,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 0.0006476731435314292,
206
+ "loss": 0.9411,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 0.0006474465593737948,
212
+ "loss": 0.9884,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 0.0006472094929998295,
218
+ "loss": 0.9892,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 0.0006469619521161782,
224
+ "loss": 1.0527,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 0.0006467039447699945,
230
+ "loss": 0.969,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 0.0006464354793486803,
236
+ "loss": 1.0009,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 0.0006461565645796124,
242
+ "loss": 1.0068,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 0.0006458672095298589,
248
+ "loss": 0.9626,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 0.0006455674236058847,
254
+ "loss": 0.934,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.07,
259
+ "learning_rate": 0.0006452572165532456,
260
+ "loss": 1.0217,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 0.0006449365984562712,
266
+ "loss": 1.0036,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 0.0006446055797377376,
272
+ "loss": 0.9234,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.08,
277
+ "learning_rate": 0.000644264171158528,
278
+ "loss": 0.9771,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.08,
283
+ "learning_rate": 0.0006439123838172836,
284
+ "loss": 1.013,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 0.0006435502291500418,
290
+ "loss": 0.9154,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 0.0006431777189298656,
296
+ "loss": 0.9098,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 0.0006427948652664599,
302
+ "loss": 0.9243,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.09,
307
+ "learning_rate": 0.0006424016806057781,
308
+ "loss": 0.9162,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.09,
313
+ "learning_rate": 0.0006419981777296182,
314
+ "loss": 0.9538,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.09,
319
+ "learning_rate": 0.0006415843697552062,
320
+ "loss": 0.9454,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.09,
325
+ "learning_rate": 0.0006411602701347703,
326
+ "loss": 0.9296,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 0.0006407258926551036,
332
+ "loss": 0.929,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 0.0006402812514371154,
338
+ "loss": 0.9172,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.1,
343
+ "learning_rate": 0.0006398263609353731,
344
+ "loss": 0.9871,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.1,
349
+ "learning_rate": 0.0006393612359376315,
350
+ "loss": 0.9279,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.1,
355
+ "learning_rate": 0.0006388858915643519,
356
+ "loss": 0.9191,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.1,
361
+ "learning_rate": 0.0006384003432682119,
362
+ "loss": 0.9828,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 0.0006379046068336013,
368
+ "loss": 0.8912,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.11,
373
+ "learning_rate": 0.00063739869837611,
374
+ "loss": 0.9023,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.11,
379
+ "learning_rate": 0.0006368826343420043,
380
+ "loss": 0.9978,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.11,
385
+ "learning_rate": 0.0006363564315076915,
386
+ "loss": 0.9097,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.11,
391
+ "learning_rate": 0.0006358201069791749,
392
+ "loss": 0.8475,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 0.000635273678191498,
398
+ "loss": 0.9763,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.12,
403
+ "learning_rate": 0.000634717162908177,
404
+ "loss": 0.8673,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.12,
409
+ "learning_rate": 0.0006341505792206243,
410
+ "loss": 0.9188,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.12,
415
+ "learning_rate": 0.0006335739455475594,
416
+ "loss": 0.865,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.12,
421
+ "learning_rate": 0.0006329872806344108,
422
+ "loss": 0.9187,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.12,
427
+ "learning_rate": 0.0006323906035527062,
428
+ "loss": 0.887,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.13,
433
+ "learning_rate": 0.0006317839336994531,
434
+ "loss": 0.908,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.13,
439
+ "learning_rate": 0.0006311672907965074,
440
+ "loss": 0.918,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.13,
445
+ "learning_rate": 0.0006305406948899329,
446
+ "loss": 0.9399,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.13,
451
+ "learning_rate": 0.0006299041663493497,
452
+ "loss": 0.9741,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.13,
457
+ "learning_rate": 0.0006292577258672713,
458
+ "loss": 0.8738,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.13,
463
+ "learning_rate": 0.0006286013944584328,
464
+ "loss": 0.9192,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.14,
469
+ "learning_rate": 0.0006279351934591071,
470
+ "loss": 0.8589,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.14,
475
+ "learning_rate": 0.0006272591445264116,
476
+ "loss": 0.955,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.14,
481
+ "learning_rate": 0.0006265732696376042,
482
+ "loss": 0.928,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.14,
487
+ "learning_rate": 0.0006258775910893685,
488
+ "loss": 0.8454,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.14,
493
+ "learning_rate": 0.0006251721314970894,
494
+ "loss": 0.8709,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.15,
499
+ "learning_rate": 0.0006244569137941179,
500
+ "loss": 0.8732,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.15,
505
+ "learning_rate": 0.0006237319612310249,
506
+ "loss": 0.9345,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.15,
511
+ "learning_rate": 0.0006229972973748463,
512
+ "loss": 0.9342,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.15,
517
+ "learning_rate": 0.0006222529461083165,
518
+ "loss": 0.8803,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.15,
523
+ "learning_rate": 0.0006214989316290914,
524
+ "loss": 0.8676,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.15,
529
+ "learning_rate": 0.0006207352784489629,
530
+ "loss": 0.9195,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.16,
535
+ "learning_rate": 0.000619962011393061,
536
+ "loss": 0.9505,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.16,
541
+ "learning_rate": 0.0006191791555990477,
542
+ "loss": 0.8778,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.16,
547
+ "learning_rate": 0.0006183867365162994,
548
+ "loss": 0.9663,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.16,
553
+ "learning_rate": 0.0006175847799050789,
554
+ "loss": 0.9304,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.16,
559
+ "learning_rate": 0.0006167733118356993,
560
+ "loss": 0.9233,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.16,
565
+ "learning_rate": 0.0006159523586876756,
566
+ "loss": 0.9167,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.17,
571
+ "learning_rate": 0.0006151219471488673,
572
+ "loss": 0.882,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.17,
577
+ "learning_rate": 0.0006142821042146112,
578
+ "loss": 0.8295,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.17,
583
+ "learning_rate": 0.0006134328571868428,
584
+ "loss": 0.7799,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.17,
589
+ "learning_rate": 0.0006125742336732103,
590
+ "loss": 0.9368,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.17,
595
+ "learning_rate": 0.000611706261586176,
596
+ "loss": 0.8542,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.18,
601
+ "learning_rate": 0.0006108289691421089,
602
+ "loss": 0.9263,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.18,
607
+ "learning_rate": 0.0006099423848603682,
608
+ "loss": 0.8572,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.18,
613
+ "learning_rate": 0.0006090465375623755,
614
+ "loss": 0.905,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.18,
619
+ "learning_rate": 0.0006081414563706781,
620
+ "loss": 0.8621,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.18,
625
+ "learning_rate": 0.0006072271707080021,
626
+ "loss": 0.8745,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.18,
631
+ "learning_rate": 0.0006063037102962963,
632
+ "loss": 0.928,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.19,
637
+ "learning_rate": 0.0006053711051557658,
638
+ "loss": 0.908,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.19,
643
+ "learning_rate": 0.0006044293856038958,
644
+ "loss": 0.8919,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.19,
649
+ "learning_rate": 0.0006034785822544665,
650
+ "loss": 0.8665,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.19,
655
+ "learning_rate": 0.0006025187260165575,
656
+ "loss": 0.8645,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.19,
661
+ "learning_rate": 0.0006015498480935434,
662
+ "loss": 0.895,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.2,
667
+ "learning_rate": 0.0006005719799820788,
668
+ "loss": 0.892,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.2,
673
+ "learning_rate": 0.0005995851534710752,
674
+ "loss": 0.8843,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.2,
679
+ "learning_rate": 0.0005985894006406671,
680
+ "loss": 0.8114,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.2,
685
+ "learning_rate": 0.0005975847538611689,
686
+ "loss": 0.9086,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.2,
691
+ "learning_rate": 0.0005965712457920233,
692
+ "loss": 0.8644,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.2,
697
+ "learning_rate": 0.000595548909380739,
698
+ "loss": 0.8638,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.21,
703
+ "learning_rate": 0.00059451777786182,
704
+ "loss": 0.8856,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.21,
709
+ "learning_rate": 0.0005934778847556848,
710
+ "loss": 0.8749,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.21,
715
+ "learning_rate": 0.0005924292638675769,
716
+ "loss": 0.8864,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.21,
721
+ "learning_rate": 0.0005913719492864662,
722
+ "loss": 0.8317,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.21,
727
+ "learning_rate": 0.0005903059753839402,
728
+ "loss": 0.8356,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.21,
733
+ "learning_rate": 0.0005892313768130872,
734
+ "loss": 0.784,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.22,
739
+ "learning_rate": 0.0005881481885073694,
740
+ "loss": 0.8377,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.22,
745
+ "learning_rate": 0.0005870564456794872,
746
+ "loss": 0.7854,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.22,
751
+ "learning_rate": 0.0005859561838202349,
752
+ "loss": 0.9538,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.22,
757
+ "learning_rate": 0.0005848474386973468,
758
+ "loss": 0.8268,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.22,
763
+ "learning_rate": 0.0005837302463543341,
764
+ "loss": 0.9009,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.23,
769
+ "learning_rate": 0.000582604643109314,
770
+ "loss": 0.8684,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.23,
775
+ "learning_rate": 0.0005814706655538279,
776
+ "loss": 0.7749,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.23,
781
+ "learning_rate": 0.0005803283505516529,
782
+ "loss": 0.8931,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.23,
787
+ "learning_rate": 0.0005791777352376026,
788
+ "loss": 0.8246,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.23,
793
+ "learning_rate": 0.0005780188570163211,
794
+ "loss": 0.7862,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.23,
799
+ "learning_rate": 0.0005768517535610654,
800
+ "loss": 0.9168,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.24,
805
+ "learning_rate": 0.0005756764628124819,
806
+ "loss": 0.8706,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.24,
811
+ "learning_rate": 0.000574493022977373,
812
+ "loss": 0.7976,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.24,
817
+ "learning_rate": 0.000573301472527454,
818
+ "loss": 0.814,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.24,
823
+ "learning_rate": 0.000572101850198104,
824
+ "loss": 0.8991,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.24,
829
+ "learning_rate": 0.0005708941949871053,
830
+ "loss": 0.8539,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.24,
835
+ "learning_rate": 0.0005696785461533761,
836
+ "loss": 0.9107,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.25,
841
+ "learning_rate": 0.0005684549432156948,
842
+ "loss": 0.9165,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.25,
847
+ "learning_rate": 0.0005672234259514147,
848
+ "loss": 0.843,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.25,
853
+ "learning_rate": 0.000565984034395171,
854
+ "loss": 0.8328,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.25,
859
+ "learning_rate": 0.0005647368088375792,
860
+ "loss": 0.884,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.25,
865
+ "learning_rate": 0.000563481789823926,
866
+ "loss": 0.9101,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.26,
871
+ "learning_rate": 0.0005622190181528502,
872
+ "loss": 0.8508,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.26,
877
+ "learning_rate": 0.0005609485348750175,
878
+ "loss": 0.8575,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.26,
883
+ "learning_rate": 0.0005596703812917851,
884
+ "loss": 0.8861,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.26,
889
+ "learning_rate": 0.0005583845989538596,
890
+ "loss": 0.8163,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.26,
895
+ "learning_rate": 0.0005570912296599459,
896
+ "loss": 0.8583,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.26,
901
+ "learning_rate": 0.0005557903154553888,
902
+ "loss": 0.8635,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.27,
907
+ "learning_rate": 0.000554481898630806,
908
+ "loss": 0.811,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.27,
913
+ "learning_rate": 0.0005531660217207126,
914
+ "loss": 0.9116,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.27,
919
+ "learning_rate": 0.0005518427275021399,
920
+ "loss": 0.868,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.27,
925
+ "learning_rate": 0.0005505120589932435,
926
+ "loss": 0.8868,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.27,
931
+ "learning_rate": 0.0005491740594519051,
932
+ "loss": 0.8816,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.27,
937
+ "learning_rate": 0.0005478287723743267,
938
+ "loss": 0.8499,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.28,
943
+ "learning_rate": 0.0005464762414936163,
944
+ "loss": 0.8502,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.28,
949
+ "learning_rate": 0.0005451165107783659,
950
+ "loss": 0.86,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.28,
955
+ "learning_rate": 0.0005437496244312228,
956
+ "loss": 0.8669,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.28,
961
+ "learning_rate": 0.0005423756268874522,
962
+ "loss": 0.869,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.28,
967
+ "learning_rate": 0.000540994562813493,
968
+ "loss": 0.8476,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.29,
973
+ "learning_rate": 0.0005396064771055053,
974
+ "loss": 0.7992,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.29,
979
+ "learning_rate": 0.0005382114148879113,
980
+ "loss": 0.8569,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.29,
985
+ "learning_rate": 0.0005368094215119282,
986
+ "loss": 0.8367,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.29,
991
+ "learning_rate": 0.000535400542554094,
992
+ "loss": 0.8455,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.29,
997
+ "learning_rate": 0.0005339848238147857,
998
+ "loss": 0.9209,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.29,
1003
+ "learning_rate": 0.0005325623113167311,
1004
+ "loss": 0.8577,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.3,
1009
+ "learning_rate": 0.0005311330513035111,
1010
+ "loss": 0.8331,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.3,
1015
+ "learning_rate": 0.0005296970902380583,
1016
+ "loss": 0.7925,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.3,
1021
+ "learning_rate": 0.0005282544748011454,
1022
+ "loss": 0.8223,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.3,
1027
+ "learning_rate": 0.0005268052518898676,
1028
+ "loss": 0.8555,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.3,
1033
+ "learning_rate": 0.0005253494686161189,
1034
+ "loss": 0.9448,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.31,
1039
+ "learning_rate": 0.00052388717230506,
1040
+ "loss": 0.8364,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.31,
1045
+ "learning_rate": 0.0005224184104935797,
1046
+ "loss": 0.866,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.31,
1051
+ "learning_rate": 0.0005209432309287499,
1052
+ "loss": 0.8312,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.31,
1057
+ "learning_rate": 0.0005194616815662733,
1058
+ "loss": 0.8725,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.31,
1063
+ "learning_rate": 0.0005179738105689243,
1064
+ "loss": 0.8199,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.31,
1069
+ "learning_rate": 0.0005164796663049834,
1070
+ "loss": 0.8068,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.32,
1075
+ "learning_rate": 0.0005149792973466653,
1076
+ "loss": 0.8533,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.32,
1081
+ "learning_rate": 0.0005134727524685388,
1082
+ "loss": 0.9067,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.32,
1087
+ "learning_rate": 0.0005119600806459426,
1088
+ "loss": 0.8105,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.32,
1093
+ "learning_rate": 0.0005104413310533914,
1094
+ "loss": 0.8426,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.32,
1099
+ "learning_rate": 0.0005089165530629796,
1100
+ "loss": 0.8854,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.32,
1105
+ "learning_rate": 0.0005073857962427743,
1106
+ "loss": 0.8151,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.33,
1111
+ "learning_rate": 0.0005058491103552046,
1112
+ "loss": 0.8467,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.33,
1117
+ "learning_rate": 0.0005043065453554449,
1118
+ "loss": 0.8343,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.33,
1123
+ "learning_rate": 0.0005027581513897888,
1124
+ "loss": 0.8139,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.33,
1129
+ "learning_rate": 0.0005012039787940209,
1130
+ "loss": 0.8632,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.33,
1135
+ "learning_rate": 0.0004996440780917798,
1136
+ "loss": 0.8525,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.34,
1141
+ "learning_rate": 0.0004980784999929151,
1142
+ "loss": 0.9075,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.34,
1147
+ "learning_rate": 0.00049650729539184,
1148
+ "loss": 0.7663,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.34,
1153
+ "learning_rate": 0.0004949305153658755,
1154
+ "loss": 0.82,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.34,
1159
+ "learning_rate": 0.0004933482111735912,
1160
+ "loss": 0.9614,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.34,
1165
+ "learning_rate": 0.0004917604342531381,
1166
+ "loss": 0.8063,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.34,
1171
+ "learning_rate": 0.0004901672362205767,
1172
+ "loss": 0.8729,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.35,
1177
+ "learning_rate": 0.0004885686688681996,
1178
+ "loss": 0.8819,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.35,
1183
+ "learning_rate": 0.0004869647841628468,
1184
+ "loss": 0.7797,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.35,
1189
+ "learning_rate": 0.00048535563424421686,
1190
+ "loss": 0.7435,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.35,
1195
+ "learning_rate": 0.0004837412714231722,
1196
+ "loss": 0.7985,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.35,
1201
+ "learning_rate": 0.00048212174818003796,
1202
+ "loss": 0.8532,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.35,
1207
+ "learning_rate": 0.00048049711716289666,
1208
+ "loss": 0.8559,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.36,
1213
+ "learning_rate": 0.0004788674311858757,
1214
+ "loss": 0.818,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.36,
1219
+ "learning_rate": 0.00047723274322743176,
1220
+ "loss": 0.8423,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.36,
1225
+ "learning_rate": 0.00047559310642862737,
1226
+ "loss": 0.8352,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.36,
1231
+ "learning_rate": 0.00047394857409140383,
1232
+ "loss": 0.8056,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.36,
1237
+ "learning_rate": 0.00047229919967684887,
1238
+ "loss": 0.8196,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.37,
1243
+ "learning_rate": 0.0004706450368034578,
1244
+ "loss": 0.8858,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.37,
1249
+ "learning_rate": 0.00046898613924539154,
1250
+ "loss": 0.8701,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.37,
1255
+ "learning_rate": 0.0004673225609307275,
1256
+ "loss": 0.8912,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.37,
1261
+ "learning_rate": 0.00046565435593970737,
1262
+ "loss": 0.8082,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.37,
1267
+ "learning_rate": 0.000463981578502978,
1268
+ "loss": 0.8062,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.37,
1273
+ "learning_rate": 0.0004623042829998296,
1274
+ "loss": 0.8533,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.38,
1279
+ "learning_rate": 0.00046062252395642723,
1280
+ "loss": 0.7499,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.38,
1285
+ "learning_rate": 0.0004589363560440383,
1286
+ "loss": 0.881,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.38,
1291
+ "learning_rate": 0.00045724583407725556,
1292
+ "loss": 0.9066,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.38,
1297
+ "learning_rate": 0.0004555510130122151,
1298
+ "loss": 0.7825,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.38,
1303
+ "learning_rate": 0.0004538519479448095,
1304
+ "loss": 0.8257,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.38,
1309
+ "learning_rate": 0.00045214869410889724,
1310
+ "loss": 0.7501,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.39,
1315
+ "learning_rate": 0.0004504413068745068,
1316
+ "loss": 0.8188,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.39,
1321
+ "learning_rate": 0.0004487298417460368,
1322
+ "loss": 0.8416,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.39,
1327
+ "learning_rate": 0.00044701435436045133,
1328
+ "loss": 0.7909,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.39,
1333
+ "learning_rate": 0.0004452949004854722,
1334
+ "loss": 0.8351,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.39,
1339
+ "learning_rate": 0.00044357153601776454,
1340
+ "loss": 0.7758,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.4,
1345
+ "learning_rate": 0.0004418443169811211,
1346
+ "loss": 0.8534,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.4,
1351
+ "learning_rate": 0.00044011329952464045,
1352
+ "loss": 0.8572,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.4,
1357
+ "learning_rate": 0.00043837853992090124,
1358
+ "loss": 0.8721,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.4,
1363
+ "learning_rate": 0.00043664009456413367,
1364
+ "loss": 0.7843,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.4,
1369
+ "learning_rate": 0.0004348980199683856,
1370
+ "loss": 0.8812,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.4,
1375
+ "learning_rate": 0.0004331523727656857,
1376
+ "loss": 0.8069,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.41,
1381
+ "learning_rate": 0.0004314032097042021,
1382
+ "loss": 0.7687,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.41,
1387
+ "learning_rate": 0.00042965058764639813,
1388
+ "loss": 0.8415,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.41,
1393
+ "learning_rate": 0.00042789456356718343,
1394
+ "loss": 0.7969,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.41,
1399
+ "learning_rate": 0.0004261351945520616,
1400
+ "loss": 0.7946,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.41,
1405
+ "learning_rate": 0.00042437253779527485,
1406
+ "loss": 0.7948,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.42,
1411
+ "learning_rate": 0.00042260665059794467,
1412
+ "loss": 0.8782,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.42,
1417
+ "learning_rate": 0.0004208375903662087,
1418
+ "loss": 0.7703,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.42,
1423
+ "learning_rate": 0.00041906541460935524,
1424
+ "loss": 0.8175,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.42,
1429
+ "learning_rate": 0.0004172901809379527,
1430
+ "loss": 0.8762,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.42,
1435
+ "learning_rate": 0.0004155119470619779,
1436
+ "loss": 0.7611,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.42,
1441
+ "learning_rate": 0.00041373077078893887,
1442
+ "loss": 0.8024,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.43,
1447
+ "learning_rate": 0.0004119467100219968,
1448
+ "loss": 0.8315,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.43,
1453
+ "learning_rate": 0.0004101598227580827,
1454
+ "loss": 0.8179,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.43,
1459
+ "learning_rate": 0.0004083701670860126,
1460
+ "loss": 0.7895,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.43,
1465
+ "learning_rate": 0.0004065778011845991,
1466
+ "loss": 0.8286,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.43,
1471
+ "learning_rate": 0.0004047827833207597,
1472
+ "loss": 0.7763,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.43,
1477
+ "learning_rate": 0.0004029851718476232,
1478
+ "loss": 0.8347,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.44,
1483
+ "learning_rate": 0.0004011850252026321,
1484
+ "loss": 0.8407,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.44,
1489
+ "learning_rate": 0.0003993824019056437,
1490
+ "loss": 0.6947,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.44,
1495
+ "learning_rate": 0.0003975773605570268,
1496
+ "loss": 0.8137,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.44,
1501
+ "learning_rate": 0.0003957699598357574,
1502
+ "loss": 0.7397,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.44,
1507
+ "learning_rate": 0.00039396025849751105,
1508
+ "loss": 0.7993,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.45,
1513
+ "learning_rate": 0.0003921483153727521,
1514
+ "loss": 0.8487,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.45,
1519
+ "learning_rate": 0.0003903341893648222,
1520
+ "loss": 0.8079,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.45,
1525
+ "learning_rate": 0.00038851793944802497,
1526
+ "loss": 0.8078,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.45,
1531
+ "learning_rate": 0.0003866996246657087,
1532
+ "loss": 0.8757,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.45,
1537
+ "learning_rate": 0.0003848793041283472,
1538
+ "loss": 0.8695,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.45,
1543
+ "learning_rate": 0.0003830570370116183,
1544
+ "loss": 0.8306,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.46,
1549
+ "learning_rate": 0.0003812328825544796,
1550
+ "loss": 0.7502,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.46,
1555
+ "learning_rate": 0.00037940690005724336,
1556
+ "loss": 0.8467,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.46,
1561
+ "learning_rate": 0.0003775791488796486,
1562
+ "loss": 0.7893,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.46,
1567
+ "learning_rate": 0.0003757496884389308,
1568
+ "loss": 0.7922,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.46,
1573
+ "learning_rate": 0.00037391857820789123,
1574
+ "loss": 0.8137,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.46,
1579
+ "learning_rate": 0.00037208587771296326,
1580
+ "loss": 0.8322,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.47,
1585
+ "learning_rate": 0.00037025164653227676,
1586
+ "loss": 0.8077,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.47,
1591
+ "learning_rate": 0.0003684159442937219,
1592
+ "loss": 0.8906,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.47,
1597
+ "learning_rate": 0.0003665788306730106,
1598
+ "loss": 0.8189,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.47,
1603
+ "learning_rate": 0.00036474036539173673,
1604
+ "loss": 0.7934,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.47,
1609
+ "learning_rate": 0.00036290060821543406,
1610
+ "loss": 0.8353,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.48,
1615
+ "learning_rate": 0.00036105961895163387,
1616
+ "loss": 0.8887,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.48,
1621
+ "learning_rate": 0.00035921745744792096,
1622
+ "loss": 0.8221,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.48,
1627
+ "learning_rate": 0.0003573741835899873,
1628
+ "loss": 0.8948,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.48,
1633
+ "learning_rate": 0.0003555298572996861,
1634
+ "loss": 0.8042,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.48,
1639
+ "learning_rate": 0.00035368453853308303,
1640
+ "loss": 0.8296,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.48,
1645
+ "learning_rate": 0.00035183828727850804,
1646
+ "loss": 0.809,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.49,
1651
+ "learning_rate": 0.0003499911635546043,
1652
+ "loss": 0.7516,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.49,
1657
+ "learning_rate": 0.00034814322740837764,
1658
+ "loss": 0.8407,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.49,
1663
+ "learning_rate": 0.0003462945389132449,
1664
+ "loss": 0.7767,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.49,
1669
+ "learning_rate": 0.0003444451581670798,
1670
+ "loss": 0.826,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.49,
1675
+ "learning_rate": 0.0003425951452902607,
1676
+ "loss": 0.8608,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.49,
1681
+ "learning_rate": 0.0003407445604237151,
1682
+ "loss": 0.8421,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.5,
1687
+ "learning_rate": 0.0003388934637269651,
1688
+ "loss": 0.7686,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.5,
1693
+ "learning_rate": 0.0003370419153761715,
1694
+ "loss": 0.7972,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.5,
1699
+ "learning_rate": 0.00033518997556217776,
1700
+ "loss": 0.8238,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.5,
1705
+ "learning_rate": 0.00033333770448855317,
1706
+ "loss": 0.7767,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.5,
1711
+ "learning_rate": 0.0003314851623696355,
1712
+ "loss": 0.8312,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.51,
1717
+ "learning_rate": 0.00032963240942857416,
1718
+ "loss": 0.7618,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.51,
1723
+ "learning_rate": 0.00032777950589537176,
1724
+ "loss": 0.7653,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.51,
1729
+ "learning_rate": 0.00032592651200492634,
1730
+ "loss": 0.8921,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.51,
1735
+ "learning_rate": 0.00032407348799507374,
1736
+ "loss": 0.8412,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.51,
1741
+ "learning_rate": 0.0003222204941046283,
1742
+ "loss": 0.787,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.51,
1747
+ "learning_rate": 0.00032036759057142586,
1748
+ "loss": 0.7834,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.52,
1753
+ "learning_rate": 0.0003185148376303645,
1754
+ "loss": 0.8221,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.52,
1759
+ "learning_rate": 0.00031666229551144685,
1760
+ "loss": 0.8025,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.52,
1765
+ "learning_rate": 0.00031481002443782227,
1766
+ "loss": 0.8136,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.52,
1771
+ "learning_rate": 0.0003129580846238285,
1772
+ "loss": 0.8188,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.52,
1777
+ "learning_rate": 0.000311106536273035,
1778
+ "loss": 0.7241,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.53,
1783
+ "learning_rate": 0.0003092554395762849,
1784
+ "loss": 0.8234,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.53,
1789
+ "learning_rate": 0.0003074048547097393,
1790
+ "loss": 0.8827,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.53,
1795
+ "learning_rate": 0.0003055548418329201,
1796
+ "loss": 0.766,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.53,
1801
+ "learning_rate": 0.00030370546108675513,
1802
+ "loss": 0.753,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.53,
1807
+ "learning_rate": 0.0003018567725916224,
1808
+ "loss": 0.7767,
1809
+ "step": 300
1810
+ }
1811
+ ],
1812
+ "logging_steps": 1,
1813
+ "max_steps": 563,
1814
+ "num_input_tokens_seen": 0,
1815
+ "num_train_epochs": 1,
1816
+ "save_steps": 50,
1817
+ "total_flos": 4.549156459123507e+17,
1818
+ "train_batch_size": 3,
1819
+ "trial_name": null,
1820
+ "trial_params": null
1821
+ }
checkpoint-300/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ea8c2168763107e58dd3670b291e1ba16b1e569e4918309b6c5afd8126dffb
3
+ size 4664
checkpoint-350/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: KnutJaegersberg/Qwen-14B-Llamafied
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-350/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "KnutJaegersberg/Qwen-14B-Llamafied",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": "unsloth",
21
+ "target_modules": [
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-350/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c7d9eaf7b8f5e7764fa3f0692742472f7316200f9eb5203e0cc548dbbcb4d53
3
+ size 1994992752
checkpoint-350/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c171367859d20727e69c377d9a21d103eb9d313d0c534c72ae9d6b81e154c9e4
3
+ size 1000057492
checkpoint-350/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-350/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9baea580b5478b79eb8773090ee0926b17251647fa94aed0b09a88f630a4123
3
+ size 1064
checkpoint-350/trainer_state.json ADDED
@@ -0,0 +1,2121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.6209343583678297,
5
+ "eval_steps": 500,
6
+ "global_step": 350,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5.4166666666666664e-05,
14
+ "loss": 2.8488,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00010833333333333333,
20
+ "loss": 2.7815,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.0001625,
26
+ "loss": 2.8002,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00021666666666666666,
32
+ "loss": 2.7473,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0002708333333333333,
38
+ "loss": 2.4233,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.000325,
44
+ "loss": 1.9676,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 0.00037916666666666665,
50
+ "loss": 1.7562,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 0.0004333333333333333,
56
+ "loss": 1.3949,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004875,
62
+ "loss": 1.2908,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0005416666666666666,
68
+ "loss": 1.2542,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 0.0005958333333333333,
74
+ "loss": 1.2959,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 0.00065,
80
+ "loss": 1.1706,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 0.0006499947173877214,
86
+ "loss": 1.0829,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 0.0006499788697226147,
92
+ "loss": 1.128,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 0.0006499524575198621,
98
+ "loss": 1.0847,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 0.0006499154816380815,
104
+ "loss": 1.1143,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 0.0006498679432792988,
110
+ "loss": 1.0751,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 0.0006498098439889095,
116
+ "loss": 1.179,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 0.0006497411856556275,
122
+ "loss": 1.0327,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 0.0006496619705114241,
128
+ "loss": 1.0672,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 0.0006495722011314557,
134
+ "loss": 1.1625,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 0.0006494718804339797,
140
+ "loss": 1.0751,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 0.0006493610116802598,
146
+ "loss": 0.996,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 0.0006492395984744599,
152
+ "loss": 1.0478,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 0.0006491076447635269,
158
+ "loss": 1.064,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 0.0006489651548370628,
164
+ "loss": 0.9393,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 0.0006488121333271846,
170
+ "loss": 0.9282,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 0.0006486485852083744,
176
+ "loss": 1.0558,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 0.0006484745157973169,
182
+ "loss": 1.0015,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 0.0006482899307527272,
188
+ "loss": 1.0261,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 0.0006480948360751669,
194
+ "loss": 1.0507,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 0.0006478892381068483,
200
+ "loss": 1.0225,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 0.0006476731435314292,
206
+ "loss": 0.9411,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 0.0006474465593737948,
212
+ "loss": 0.9884,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 0.0006472094929998295,
218
+ "loss": 0.9892,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 0.0006469619521161782,
224
+ "loss": 1.0527,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 0.0006467039447699945,
230
+ "loss": 0.969,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 0.0006464354793486803,
236
+ "loss": 1.0009,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 0.0006461565645796124,
242
+ "loss": 1.0068,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 0.0006458672095298589,
248
+ "loss": 0.9626,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 0.0006455674236058847,
254
+ "loss": 0.934,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.07,
259
+ "learning_rate": 0.0006452572165532456,
260
+ "loss": 1.0217,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 0.0006449365984562712,
266
+ "loss": 1.0036,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 0.0006446055797377376,
272
+ "loss": 0.9234,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.08,
277
+ "learning_rate": 0.000644264171158528,
278
+ "loss": 0.9771,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.08,
283
+ "learning_rate": 0.0006439123838172836,
284
+ "loss": 1.013,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 0.0006435502291500418,
290
+ "loss": 0.9154,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 0.0006431777189298656,
296
+ "loss": 0.9098,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 0.0006427948652664599,
302
+ "loss": 0.9243,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.09,
307
+ "learning_rate": 0.0006424016806057781,
308
+ "loss": 0.9162,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.09,
313
+ "learning_rate": 0.0006419981777296182,
314
+ "loss": 0.9538,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.09,
319
+ "learning_rate": 0.0006415843697552062,
320
+ "loss": 0.9454,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.09,
325
+ "learning_rate": 0.0006411602701347703,
326
+ "loss": 0.9296,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 0.0006407258926551036,
332
+ "loss": 0.929,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 0.0006402812514371154,
338
+ "loss": 0.9172,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.1,
343
+ "learning_rate": 0.0006398263609353731,
344
+ "loss": 0.9871,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.1,
349
+ "learning_rate": 0.0006393612359376315,
350
+ "loss": 0.9279,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.1,
355
+ "learning_rate": 0.0006388858915643519,
356
+ "loss": 0.9191,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.1,
361
+ "learning_rate": 0.0006384003432682119,
362
+ "loss": 0.9828,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 0.0006379046068336013,
368
+ "loss": 0.8912,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.11,
373
+ "learning_rate": 0.00063739869837611,
374
+ "loss": 0.9023,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.11,
379
+ "learning_rate": 0.0006368826343420043,
380
+ "loss": 0.9978,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.11,
385
+ "learning_rate": 0.0006363564315076915,
386
+ "loss": 0.9097,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.11,
391
+ "learning_rate": 0.0006358201069791749,
392
+ "loss": 0.8475,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 0.000635273678191498,
398
+ "loss": 0.9763,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.12,
403
+ "learning_rate": 0.000634717162908177,
404
+ "loss": 0.8673,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.12,
409
+ "learning_rate": 0.0006341505792206243,
410
+ "loss": 0.9188,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.12,
415
+ "learning_rate": 0.0006335739455475594,
416
+ "loss": 0.865,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.12,
421
+ "learning_rate": 0.0006329872806344108,
422
+ "loss": 0.9187,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.12,
427
+ "learning_rate": 0.0006323906035527062,
428
+ "loss": 0.887,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.13,
433
+ "learning_rate": 0.0006317839336994531,
434
+ "loss": 0.908,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.13,
439
+ "learning_rate": 0.0006311672907965074,
440
+ "loss": 0.918,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.13,
445
+ "learning_rate": 0.0006305406948899329,
446
+ "loss": 0.9399,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.13,
451
+ "learning_rate": 0.0006299041663493497,
452
+ "loss": 0.9741,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.13,
457
+ "learning_rate": 0.0006292577258672713,
458
+ "loss": 0.8738,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.13,
463
+ "learning_rate": 0.0006286013944584328,
464
+ "loss": 0.9192,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.14,
469
+ "learning_rate": 0.0006279351934591071,
470
+ "loss": 0.8589,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.14,
475
+ "learning_rate": 0.0006272591445264116,
476
+ "loss": 0.955,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.14,
481
+ "learning_rate": 0.0006265732696376042,
482
+ "loss": 0.928,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.14,
487
+ "learning_rate": 0.0006258775910893685,
488
+ "loss": 0.8454,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.14,
493
+ "learning_rate": 0.0006251721314970894,
494
+ "loss": 0.8709,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.15,
499
+ "learning_rate": 0.0006244569137941179,
500
+ "loss": 0.8732,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.15,
505
+ "learning_rate": 0.0006237319612310249,
506
+ "loss": 0.9345,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.15,
511
+ "learning_rate": 0.0006229972973748463,
512
+ "loss": 0.9342,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.15,
517
+ "learning_rate": 0.0006222529461083165,
518
+ "loss": 0.8803,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.15,
523
+ "learning_rate": 0.0006214989316290914,
524
+ "loss": 0.8676,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.15,
529
+ "learning_rate": 0.0006207352784489629,
530
+ "loss": 0.9195,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.16,
535
+ "learning_rate": 0.000619962011393061,
536
+ "loss": 0.9505,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.16,
541
+ "learning_rate": 0.0006191791555990477,
542
+ "loss": 0.8778,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.16,
547
+ "learning_rate": 0.0006183867365162994,
548
+ "loss": 0.9663,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.16,
553
+ "learning_rate": 0.0006175847799050789,
554
+ "loss": 0.9304,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.16,
559
+ "learning_rate": 0.0006167733118356993,
560
+ "loss": 0.9233,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.16,
565
+ "learning_rate": 0.0006159523586876756,
566
+ "loss": 0.9167,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.17,
571
+ "learning_rate": 0.0006151219471488673,
572
+ "loss": 0.882,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.17,
577
+ "learning_rate": 0.0006142821042146112,
578
+ "loss": 0.8295,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.17,
583
+ "learning_rate": 0.0006134328571868428,
584
+ "loss": 0.7799,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.17,
589
+ "learning_rate": 0.0006125742336732103,
590
+ "loss": 0.9368,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.17,
595
+ "learning_rate": 0.000611706261586176,
596
+ "loss": 0.8542,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.18,
601
+ "learning_rate": 0.0006108289691421089,
602
+ "loss": 0.9263,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.18,
607
+ "learning_rate": 0.0006099423848603682,
608
+ "loss": 0.8572,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.18,
613
+ "learning_rate": 0.0006090465375623755,
614
+ "loss": 0.905,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.18,
619
+ "learning_rate": 0.0006081414563706781,
620
+ "loss": 0.8621,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.18,
625
+ "learning_rate": 0.0006072271707080021,
626
+ "loss": 0.8745,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.18,
631
+ "learning_rate": 0.0006063037102962963,
632
+ "loss": 0.928,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.19,
637
+ "learning_rate": 0.0006053711051557658,
638
+ "loss": 0.908,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.19,
643
+ "learning_rate": 0.0006044293856038958,
644
+ "loss": 0.8919,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.19,
649
+ "learning_rate": 0.0006034785822544665,
650
+ "loss": 0.8665,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.19,
655
+ "learning_rate": 0.0006025187260165575,
656
+ "loss": 0.8645,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.19,
661
+ "learning_rate": 0.0006015498480935434,
662
+ "loss": 0.895,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.2,
667
+ "learning_rate": 0.0006005719799820788,
668
+ "loss": 0.892,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.2,
673
+ "learning_rate": 0.0005995851534710752,
674
+ "loss": 0.8843,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.2,
679
+ "learning_rate": 0.0005985894006406671,
680
+ "loss": 0.8114,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.2,
685
+ "learning_rate": 0.0005975847538611689,
686
+ "loss": 0.9086,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.2,
691
+ "learning_rate": 0.0005965712457920233,
692
+ "loss": 0.8644,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.2,
697
+ "learning_rate": 0.000595548909380739,
698
+ "loss": 0.8638,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.21,
703
+ "learning_rate": 0.00059451777786182,
704
+ "loss": 0.8856,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.21,
709
+ "learning_rate": 0.0005934778847556848,
710
+ "loss": 0.8749,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.21,
715
+ "learning_rate": 0.0005924292638675769,
716
+ "loss": 0.8864,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.21,
721
+ "learning_rate": 0.0005913719492864662,
722
+ "loss": 0.8317,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.21,
727
+ "learning_rate": 0.0005903059753839402,
728
+ "loss": 0.8356,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.21,
733
+ "learning_rate": 0.0005892313768130872,
734
+ "loss": 0.784,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.22,
739
+ "learning_rate": 0.0005881481885073694,
740
+ "loss": 0.8377,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.22,
745
+ "learning_rate": 0.0005870564456794872,
746
+ "loss": 0.7854,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.22,
751
+ "learning_rate": 0.0005859561838202349,
752
+ "loss": 0.9538,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.22,
757
+ "learning_rate": 0.0005848474386973468,
758
+ "loss": 0.8268,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.22,
763
+ "learning_rate": 0.0005837302463543341,
764
+ "loss": 0.9009,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.23,
769
+ "learning_rate": 0.000582604643109314,
770
+ "loss": 0.8684,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.23,
775
+ "learning_rate": 0.0005814706655538279,
776
+ "loss": 0.7749,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.23,
781
+ "learning_rate": 0.0005803283505516529,
782
+ "loss": 0.8931,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.23,
787
+ "learning_rate": 0.0005791777352376026,
788
+ "loss": 0.8246,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.23,
793
+ "learning_rate": 0.0005780188570163211,
794
+ "loss": 0.7862,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.23,
799
+ "learning_rate": 0.0005768517535610654,
800
+ "loss": 0.9168,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.24,
805
+ "learning_rate": 0.0005756764628124819,
806
+ "loss": 0.8706,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.24,
811
+ "learning_rate": 0.000574493022977373,
812
+ "loss": 0.7976,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.24,
817
+ "learning_rate": 0.000573301472527454,
818
+ "loss": 0.814,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.24,
823
+ "learning_rate": 0.000572101850198104,
824
+ "loss": 0.8991,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.24,
829
+ "learning_rate": 0.0005708941949871053,
830
+ "loss": 0.8539,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.24,
835
+ "learning_rate": 0.0005696785461533761,
836
+ "loss": 0.9107,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.25,
841
+ "learning_rate": 0.0005684549432156948,
842
+ "loss": 0.9165,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.25,
847
+ "learning_rate": 0.0005672234259514147,
848
+ "loss": 0.843,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.25,
853
+ "learning_rate": 0.000565984034395171,
854
+ "loss": 0.8328,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.25,
859
+ "learning_rate": 0.0005647368088375792,
860
+ "loss": 0.884,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.25,
865
+ "learning_rate": 0.000563481789823926,
866
+ "loss": 0.9101,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.26,
871
+ "learning_rate": 0.0005622190181528502,
872
+ "loss": 0.8508,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.26,
877
+ "learning_rate": 0.0005609485348750175,
878
+ "loss": 0.8575,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.26,
883
+ "learning_rate": 0.0005596703812917851,
884
+ "loss": 0.8861,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.26,
889
+ "learning_rate": 0.0005583845989538596,
890
+ "loss": 0.8163,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.26,
895
+ "learning_rate": 0.0005570912296599459,
896
+ "loss": 0.8583,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.26,
901
+ "learning_rate": 0.0005557903154553888,
902
+ "loss": 0.8635,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.27,
907
+ "learning_rate": 0.000554481898630806,
908
+ "loss": 0.811,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.27,
913
+ "learning_rate": 0.0005531660217207126,
914
+ "loss": 0.9116,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.27,
919
+ "learning_rate": 0.0005518427275021399,
920
+ "loss": 0.868,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.27,
925
+ "learning_rate": 0.0005505120589932435,
926
+ "loss": 0.8868,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.27,
931
+ "learning_rate": 0.0005491740594519051,
932
+ "loss": 0.8816,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.27,
937
+ "learning_rate": 0.0005478287723743267,
938
+ "loss": 0.8499,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.28,
943
+ "learning_rate": 0.0005464762414936163,
944
+ "loss": 0.8502,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.28,
949
+ "learning_rate": 0.0005451165107783659,
950
+ "loss": 0.86,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.28,
955
+ "learning_rate": 0.0005437496244312228,
956
+ "loss": 0.8669,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.28,
961
+ "learning_rate": 0.0005423756268874522,
962
+ "loss": 0.869,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.28,
967
+ "learning_rate": 0.000540994562813493,
968
+ "loss": 0.8476,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.29,
973
+ "learning_rate": 0.0005396064771055053,
974
+ "loss": 0.7992,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.29,
979
+ "learning_rate": 0.0005382114148879113,
980
+ "loss": 0.8569,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.29,
985
+ "learning_rate": 0.0005368094215119282,
986
+ "loss": 0.8367,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.29,
991
+ "learning_rate": 0.000535400542554094,
992
+ "loss": 0.8455,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.29,
997
+ "learning_rate": 0.0005339848238147857,
998
+ "loss": 0.9209,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.29,
1003
+ "learning_rate": 0.0005325623113167311,
1004
+ "loss": 0.8577,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.3,
1009
+ "learning_rate": 0.0005311330513035111,
1010
+ "loss": 0.8331,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.3,
1015
+ "learning_rate": 0.0005296970902380583,
1016
+ "loss": 0.7925,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.3,
1021
+ "learning_rate": 0.0005282544748011454,
1022
+ "loss": 0.8223,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.3,
1027
+ "learning_rate": 0.0005268052518898676,
1028
+ "loss": 0.8555,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.3,
1033
+ "learning_rate": 0.0005253494686161189,
1034
+ "loss": 0.9448,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.31,
1039
+ "learning_rate": 0.00052388717230506,
1040
+ "loss": 0.8364,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.31,
1045
+ "learning_rate": 0.0005224184104935797,
1046
+ "loss": 0.866,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.31,
1051
+ "learning_rate": 0.0005209432309287499,
1052
+ "loss": 0.8312,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.31,
1057
+ "learning_rate": 0.0005194616815662733,
1058
+ "loss": 0.8725,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.31,
1063
+ "learning_rate": 0.0005179738105689243,
1064
+ "loss": 0.8199,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.31,
1069
+ "learning_rate": 0.0005164796663049834,
1070
+ "loss": 0.8068,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.32,
1075
+ "learning_rate": 0.0005149792973466653,
1076
+ "loss": 0.8533,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.32,
1081
+ "learning_rate": 0.0005134727524685388,
1082
+ "loss": 0.9067,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.32,
1087
+ "learning_rate": 0.0005119600806459426,
1088
+ "loss": 0.8105,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.32,
1093
+ "learning_rate": 0.0005104413310533914,
1094
+ "loss": 0.8426,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.32,
1099
+ "learning_rate": 0.0005089165530629796,
1100
+ "loss": 0.8854,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.32,
1105
+ "learning_rate": 0.0005073857962427743,
1106
+ "loss": 0.8151,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.33,
1111
+ "learning_rate": 0.0005058491103552046,
1112
+ "loss": 0.8467,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.33,
1117
+ "learning_rate": 0.0005043065453554449,
1118
+ "loss": 0.8343,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.33,
1123
+ "learning_rate": 0.0005027581513897888,
1124
+ "loss": 0.8139,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.33,
1129
+ "learning_rate": 0.0005012039787940209,
1130
+ "loss": 0.8632,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.33,
1135
+ "learning_rate": 0.0004996440780917798,
1136
+ "loss": 0.8525,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.34,
1141
+ "learning_rate": 0.0004980784999929151,
1142
+ "loss": 0.9075,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.34,
1147
+ "learning_rate": 0.00049650729539184,
1148
+ "loss": 0.7663,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.34,
1153
+ "learning_rate": 0.0004949305153658755,
1154
+ "loss": 0.82,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.34,
1159
+ "learning_rate": 0.0004933482111735912,
1160
+ "loss": 0.9614,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.34,
1165
+ "learning_rate": 0.0004917604342531381,
1166
+ "loss": 0.8063,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.34,
1171
+ "learning_rate": 0.0004901672362205767,
1172
+ "loss": 0.8729,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.35,
1177
+ "learning_rate": 0.0004885686688681996,
1178
+ "loss": 0.8819,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.35,
1183
+ "learning_rate": 0.0004869647841628468,
1184
+ "loss": 0.7797,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.35,
1189
+ "learning_rate": 0.00048535563424421686,
1190
+ "loss": 0.7435,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.35,
1195
+ "learning_rate": 0.0004837412714231722,
1196
+ "loss": 0.7985,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.35,
1201
+ "learning_rate": 0.00048212174818003796,
1202
+ "loss": 0.8532,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.35,
1207
+ "learning_rate": 0.00048049711716289666,
1208
+ "loss": 0.8559,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.36,
1213
+ "learning_rate": 0.0004788674311858757,
1214
+ "loss": 0.818,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.36,
1219
+ "learning_rate": 0.00047723274322743176,
1220
+ "loss": 0.8423,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.36,
1225
+ "learning_rate": 0.00047559310642862737,
1226
+ "loss": 0.8352,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.36,
1231
+ "learning_rate": 0.00047394857409140383,
1232
+ "loss": 0.8056,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.36,
1237
+ "learning_rate": 0.00047229919967684887,
1238
+ "loss": 0.8196,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.37,
1243
+ "learning_rate": 0.0004706450368034578,
1244
+ "loss": 0.8858,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.37,
1249
+ "learning_rate": 0.00046898613924539154,
1250
+ "loss": 0.8701,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.37,
1255
+ "learning_rate": 0.0004673225609307275,
1256
+ "loss": 0.8912,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.37,
1261
+ "learning_rate": 0.00046565435593970737,
1262
+ "loss": 0.8082,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.37,
1267
+ "learning_rate": 0.000463981578502978,
1268
+ "loss": 0.8062,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.37,
1273
+ "learning_rate": 0.0004623042829998296,
1274
+ "loss": 0.8533,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.38,
1279
+ "learning_rate": 0.00046062252395642723,
1280
+ "loss": 0.7499,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.38,
1285
+ "learning_rate": 0.0004589363560440383,
1286
+ "loss": 0.881,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.38,
1291
+ "learning_rate": 0.00045724583407725556,
1292
+ "loss": 0.9066,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.38,
1297
+ "learning_rate": 0.0004555510130122151,
1298
+ "loss": 0.7825,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.38,
1303
+ "learning_rate": 0.0004538519479448095,
1304
+ "loss": 0.8257,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.38,
1309
+ "learning_rate": 0.00045214869410889724,
1310
+ "loss": 0.7501,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.39,
1315
+ "learning_rate": 0.0004504413068745068,
1316
+ "loss": 0.8188,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.39,
1321
+ "learning_rate": 0.0004487298417460368,
1322
+ "loss": 0.8416,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.39,
1327
+ "learning_rate": 0.00044701435436045133,
1328
+ "loss": 0.7909,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.39,
1333
+ "learning_rate": 0.0004452949004854722,
1334
+ "loss": 0.8351,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.39,
1339
+ "learning_rate": 0.00044357153601776454,
1340
+ "loss": 0.7758,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.4,
1345
+ "learning_rate": 0.0004418443169811211,
1346
+ "loss": 0.8534,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.4,
1351
+ "learning_rate": 0.00044011329952464045,
1352
+ "loss": 0.8572,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.4,
1357
+ "learning_rate": 0.00043837853992090124,
1358
+ "loss": 0.8721,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.4,
1363
+ "learning_rate": 0.00043664009456413367,
1364
+ "loss": 0.7843,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.4,
1369
+ "learning_rate": 0.0004348980199683856,
1370
+ "loss": 0.8812,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.4,
1375
+ "learning_rate": 0.0004331523727656857,
1376
+ "loss": 0.8069,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.41,
1381
+ "learning_rate": 0.0004314032097042021,
1382
+ "loss": 0.7687,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.41,
1387
+ "learning_rate": 0.00042965058764639813,
1388
+ "loss": 0.8415,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.41,
1393
+ "learning_rate": 0.00042789456356718343,
1394
+ "loss": 0.7969,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.41,
1399
+ "learning_rate": 0.0004261351945520616,
1400
+ "loss": 0.7946,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.41,
1405
+ "learning_rate": 0.00042437253779527485,
1406
+ "loss": 0.7948,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.42,
1411
+ "learning_rate": 0.00042260665059794467,
1412
+ "loss": 0.8782,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.42,
1417
+ "learning_rate": 0.0004208375903662087,
1418
+ "loss": 0.7703,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.42,
1423
+ "learning_rate": 0.00041906541460935524,
1424
+ "loss": 0.8175,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.42,
1429
+ "learning_rate": 0.0004172901809379527,
1430
+ "loss": 0.8762,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.42,
1435
+ "learning_rate": 0.0004155119470619779,
1436
+ "loss": 0.7611,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.42,
1441
+ "learning_rate": 0.00041373077078893887,
1442
+ "loss": 0.8024,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.43,
1447
+ "learning_rate": 0.0004119467100219968,
1448
+ "loss": 0.8315,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.43,
1453
+ "learning_rate": 0.0004101598227580827,
1454
+ "loss": 0.8179,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.43,
1459
+ "learning_rate": 0.0004083701670860126,
1460
+ "loss": 0.7895,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.43,
1465
+ "learning_rate": 0.0004065778011845991,
1466
+ "loss": 0.8286,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.43,
1471
+ "learning_rate": 0.0004047827833207597,
1472
+ "loss": 0.7763,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.43,
1477
+ "learning_rate": 0.0004029851718476232,
1478
+ "loss": 0.8347,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.44,
1483
+ "learning_rate": 0.0004011850252026321,
1484
+ "loss": 0.8407,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.44,
1489
+ "learning_rate": 0.0003993824019056437,
1490
+ "loss": 0.6947,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.44,
1495
+ "learning_rate": 0.0003975773605570268,
1496
+ "loss": 0.8137,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.44,
1501
+ "learning_rate": 0.0003957699598357574,
1502
+ "loss": 0.7397,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.44,
1507
+ "learning_rate": 0.00039396025849751105,
1508
+ "loss": 0.7993,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.45,
1513
+ "learning_rate": 0.0003921483153727521,
1514
+ "loss": 0.8487,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.45,
1519
+ "learning_rate": 0.0003903341893648222,
1520
+ "loss": 0.8079,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.45,
1525
+ "learning_rate": 0.00038851793944802497,
1526
+ "loss": 0.8078,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.45,
1531
+ "learning_rate": 0.0003866996246657087,
1532
+ "loss": 0.8757,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.45,
1537
+ "learning_rate": 0.0003848793041283472,
1538
+ "loss": 0.8695,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.45,
1543
+ "learning_rate": 0.0003830570370116183,
1544
+ "loss": 0.8306,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.46,
1549
+ "learning_rate": 0.0003812328825544796,
1550
+ "loss": 0.7502,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.46,
1555
+ "learning_rate": 0.00037940690005724336,
1556
+ "loss": 0.8467,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.46,
1561
+ "learning_rate": 0.0003775791488796486,
1562
+ "loss": 0.7893,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.46,
1567
+ "learning_rate": 0.0003757496884389308,
1568
+ "loss": 0.7922,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.46,
1573
+ "learning_rate": 0.00037391857820789123,
1574
+ "loss": 0.8137,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.46,
1579
+ "learning_rate": 0.00037208587771296326,
1580
+ "loss": 0.8322,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.47,
1585
+ "learning_rate": 0.00037025164653227676,
1586
+ "loss": 0.8077,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.47,
1591
+ "learning_rate": 0.0003684159442937219,
1592
+ "loss": 0.8906,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.47,
1597
+ "learning_rate": 0.0003665788306730106,
1598
+ "loss": 0.8189,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.47,
1603
+ "learning_rate": 0.00036474036539173673,
1604
+ "loss": 0.7934,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.47,
1609
+ "learning_rate": 0.00036290060821543406,
1610
+ "loss": 0.8353,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.48,
1615
+ "learning_rate": 0.00036105961895163387,
1616
+ "loss": 0.8887,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.48,
1621
+ "learning_rate": 0.00035921745744792096,
1622
+ "loss": 0.8221,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.48,
1627
+ "learning_rate": 0.0003573741835899873,
1628
+ "loss": 0.8948,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.48,
1633
+ "learning_rate": 0.0003555298572996861,
1634
+ "loss": 0.8042,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.48,
1639
+ "learning_rate": 0.00035368453853308303,
1640
+ "loss": 0.8296,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.48,
1645
+ "learning_rate": 0.00035183828727850804,
1646
+ "loss": 0.809,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.49,
1651
+ "learning_rate": 0.0003499911635546043,
1652
+ "loss": 0.7516,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.49,
1657
+ "learning_rate": 0.00034814322740837764,
1658
+ "loss": 0.8407,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.49,
1663
+ "learning_rate": 0.0003462945389132449,
1664
+ "loss": 0.7767,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.49,
1669
+ "learning_rate": 0.0003444451581670798,
1670
+ "loss": 0.826,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.49,
1675
+ "learning_rate": 0.0003425951452902607,
1676
+ "loss": 0.8608,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.49,
1681
+ "learning_rate": 0.0003407445604237151,
1682
+ "loss": 0.8421,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.5,
1687
+ "learning_rate": 0.0003388934637269651,
1688
+ "loss": 0.7686,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.5,
1693
+ "learning_rate": 0.0003370419153761715,
1694
+ "loss": 0.7972,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.5,
1699
+ "learning_rate": 0.00033518997556217776,
1700
+ "loss": 0.8238,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.5,
1705
+ "learning_rate": 0.00033333770448855317,
1706
+ "loss": 0.7767,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.5,
1711
+ "learning_rate": 0.0003314851623696355,
1712
+ "loss": 0.8312,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.51,
1717
+ "learning_rate": 0.00032963240942857416,
1718
+ "loss": 0.7618,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.51,
1723
+ "learning_rate": 0.00032777950589537176,
1724
+ "loss": 0.7653,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.51,
1729
+ "learning_rate": 0.00032592651200492634,
1730
+ "loss": 0.8921,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.51,
1735
+ "learning_rate": 0.00032407348799507374,
1736
+ "loss": 0.8412,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.51,
1741
+ "learning_rate": 0.0003222204941046283,
1742
+ "loss": 0.787,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.51,
1747
+ "learning_rate": 0.00032036759057142586,
1748
+ "loss": 0.7834,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.52,
1753
+ "learning_rate": 0.0003185148376303645,
1754
+ "loss": 0.8221,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.52,
1759
+ "learning_rate": 0.00031666229551144685,
1760
+ "loss": 0.8025,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.52,
1765
+ "learning_rate": 0.00031481002443782227,
1766
+ "loss": 0.8136,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.52,
1771
+ "learning_rate": 0.0003129580846238285,
1772
+ "loss": 0.8188,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.52,
1777
+ "learning_rate": 0.000311106536273035,
1778
+ "loss": 0.7241,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.53,
1783
+ "learning_rate": 0.0003092554395762849,
1784
+ "loss": 0.8234,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.53,
1789
+ "learning_rate": 0.0003074048547097393,
1790
+ "loss": 0.8827,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.53,
1795
+ "learning_rate": 0.0003055548418329201,
1796
+ "loss": 0.766,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.53,
1801
+ "learning_rate": 0.00030370546108675513,
1802
+ "loss": 0.753,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.53,
1807
+ "learning_rate": 0.0003018567725916224,
1808
+ "loss": 0.7767,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.53,
1813
+ "learning_rate": 0.0003000088364453958,
1814
+ "loss": 0.7809,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.54,
1819
+ "learning_rate": 0.000298161712721492,
1820
+ "loss": 0.8679,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.54,
1825
+ "learning_rate": 0.00029631546146691694,
1826
+ "loss": 0.8464,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.54,
1831
+ "learning_rate": 0.00029447014270031393,
1832
+ "loss": 0.7181,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.54,
1837
+ "learning_rate": 0.0002926258164100127,
1838
+ "loss": 0.9354,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.54,
1843
+ "learning_rate": 0.00029078254255207906,
1844
+ "loss": 0.8151,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.54,
1849
+ "learning_rate": 0.00028894038104836615,
1850
+ "loss": 0.8382,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.55,
1855
+ "learning_rate": 0.000287099391784566,
1856
+ "loss": 0.7495,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.55,
1861
+ "learning_rate": 0.0002852596346082633,
1862
+ "loss": 0.8873,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.55,
1867
+ "learning_rate": 0.0002834211693269893,
1868
+ "loss": 0.7534,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.55,
1873
+ "learning_rate": 0.0002815840557062782,
1874
+ "loss": 0.7908,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.55,
1879
+ "learning_rate": 0.00027974835346772337,
1880
+ "loss": 0.7738,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.56,
1885
+ "learning_rate": 0.00027791412228703676,
1886
+ "loss": 0.7945,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.56,
1891
+ "learning_rate": 0.00027608142179210874,
1892
+ "loss": 0.7678,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.56,
1897
+ "learning_rate": 0.00027425031156106923,
1898
+ "loss": 0.8487,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.56,
1903
+ "learning_rate": 0.00027242085112035144,
1904
+ "loss": 0.7736,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.56,
1909
+ "learning_rate": 0.0002705930999427566,
1910
+ "loss": 0.8068,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.56,
1915
+ "learning_rate": 0.00026876711744552043,
1916
+ "loss": 0.8051,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.57,
1921
+ "learning_rate": 0.00026694296298838174,
1922
+ "loss": 0.7384,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.57,
1927
+ "learning_rate": 0.0002651206958716527,
1928
+ "loss": 0.8203,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.57,
1933
+ "learning_rate": 0.00026330037533429127,
1934
+ "loss": 0.7676,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.57,
1939
+ "learning_rate": 0.000261482060551975,
1940
+ "loss": 0.7505,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.57,
1945
+ "learning_rate": 0.0002596658106351778,
1946
+ "loss": 0.8522,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.57,
1951
+ "learning_rate": 0.000257851684627248,
1952
+ "loss": 0.8943,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.58,
1957
+ "learning_rate": 0.00025603974150248903,
1958
+ "loss": 0.8092,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.58,
1963
+ "learning_rate": 0.0002542300401642426,
1964
+ "loss": 0.8543,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.58,
1969
+ "learning_rate": 0.0002524226394429732,
1970
+ "loss": 0.8052,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.58,
1975
+ "learning_rate": 0.0002506175980943563,
1976
+ "loss": 0.7748,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.58,
1981
+ "learning_rate": 0.00024881497479736786,
1982
+ "loss": 0.784,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.59,
1987
+ "learning_rate": 0.0002470148281523768,
1988
+ "loss": 0.7701,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.59,
1993
+ "learning_rate": 0.0002452172166792403,
1994
+ "loss": 0.7336,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.59,
1999
+ "learning_rate": 0.00024342219881540086,
2000
+ "loss": 0.7608,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.59,
2005
+ "learning_rate": 0.00024162983291398736,
2006
+ "loss": 0.8646,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.59,
2011
+ "learning_rate": 0.00023984017724191725,
2012
+ "loss": 0.7821,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.59,
2017
+ "learning_rate": 0.00023805328997800329,
2018
+ "loss": 0.753,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.6,
2023
+ "learning_rate": 0.0002362692292110612,
2024
+ "loss": 0.7984,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.6,
2029
+ "learning_rate": 0.00023448805293802222,
2030
+ "loss": 0.7831,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.6,
2035
+ "learning_rate": 0.00023270981906204732,
2036
+ "loss": 0.738,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.6,
2041
+ "learning_rate": 0.00023093458539064478,
2042
+ "loss": 0.8652,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.6,
2047
+ "learning_rate": 0.00022916240963379128,
2048
+ "loss": 0.7252,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.6,
2053
+ "learning_rate": 0.0002273933494020554,
2054
+ "loss": 0.7484,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.61,
2059
+ "learning_rate": 0.00022562746220472518,
2060
+ "loss": 0.7634,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.61,
2065
+ "learning_rate": 0.00022386480544793846,
2066
+ "loss": 0.8458,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.61,
2071
+ "learning_rate": 0.00022210543643281656,
2072
+ "loss": 0.7653,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.61,
2077
+ "learning_rate": 0.00022034941235360179,
2078
+ "loss": 0.7125,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.61,
2083
+ "learning_rate": 0.00021859679029579784,
2084
+ "loss": 0.7616,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.62,
2089
+ "learning_rate": 0.0002168476272343144,
2090
+ "loss": 0.7459,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.62,
2095
+ "learning_rate": 0.00021510198003161447,
2096
+ "loss": 0.8287,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.62,
2101
+ "learning_rate": 0.00021335990543586635,
2102
+ "loss": 0.7626,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.62,
2107
+ "learning_rate": 0.00021162146007909881,
2108
+ "loss": 0.6894,
2109
+ "step": 350
2110
+ }
2111
+ ],
2112
+ "logging_steps": 1,
2113
+ "max_steps": 563,
2114
+ "num_input_tokens_seen": 0,
2115
+ "num_train_epochs": 1,
2116
+ "save_steps": 50,
2117
+ "total_flos": 5.307589181023027e+17,
2118
+ "train_batch_size": 3,
2119
+ "trial_name": null,
2120
+ "trial_params": null
2121
+ }
checkpoint-350/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ea8c2168763107e58dd3670b291e1ba16b1e569e4918309b6c5afd8126dffb
3
+ size 4664
checkpoint-400/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: KnutJaegersberg/Qwen-14B-Llamafied
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-400/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "KnutJaegersberg/Qwen-14B-Llamafied",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": "unsloth",
21
+ "target_modules": [
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }