metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: >-
generate question: <hl> Beyonce <hl> further expanded her acting career,
starring as blues singer Etta James in the 2008 musical biopic, Cadillac
Records.
example_title: Question Generation Example 1
- text: >-
generate question: Beyonce further expanded her acting career, starring as
blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac
Records.
example_title: Question Generation Example 2
- text: >-
generate question: Beyonce further expanded her acting career, starring as
blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records
<hl> .
example_title: Question Generation Example 3
model-index:
- name: lmqg/bart-large-squad
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squad
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.26168385362299557
- name: ROUGE-L
type: rouge-l
value: 0.5384959163821219
- name: METEOR
type: meteor
value: 0.27073122286541956
- name: BERTScore
type: bertscore
value: 0.9100413219045603
- name: MoverScore
type: moverscore
value: 0.6499011626820898
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: reddit
args: reddit
metrics:
- name: BLEU4
type: bleu4
value: 0.059525104157825456
- name: ROUGE-L
type: rouge-l
value: 0.22365090580055863
- name: METEOR
type: meteor
value: 0.21499800504546457
- name: BERTScore
type: bertscore
value: 0.9095144685254328
- name: MoverScore
type: moverscore
value: 0.6059332247878408
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: new_wiki
args: new_wiki
metrics:
- name: BLEU4
type: bleu4
value: 0.11118273173452982
- name: ROUGE-L
type: rouge-l
value: 0.2967546690273089
- name: METEOR
type: meteor
value: 0.27315087810722966
- name: BERTScore
type: bertscore
value: 0.9322739617807421
- name: MoverScore
type: moverscore
value: 0.6623000084761579
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: tripadvisor
args: tripadvisor
metrics:
- name: BLEU4
type: bleu4
value: 8.380171318718442e-7
- name: ROUGE-L
type: rouge-l
value: 0.1402922852924756
- name: METEOR
type: meteor
value: 0.1372146070365174
- name: BERTScore
type: bertscore
value: 0.8891002409937424
- name: MoverScore
type: moverscore
value: 0.5604572211470809
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.07839941048417529
- name: ROUGE-L
type: rouge-l
value: 0.25357667226247294
- name: METEOR
type: meteor
value: 0.24046838149047955
- name: BERTScore
type: bertscore
value: 0.9182198703598111
- name: MoverScore
type: moverscore
value: 0.6274693859765924
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: nyt
args: nyt
metrics:
- name: BLEU4
type: bleu4
value: 0.08117757543966063
- name: ROUGE-L
type: rouge-l
value: 0.25292097720734297
- name: METEOR
type: meteor
value: 0.25254205113198686
- name: BERTScore
type: bertscore
value: 0.9249009759439454
- name: MoverScore
type: moverscore
value: 0.6406329128556304
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: restaurants
args: restaurants
metrics:
- name: BLEU4
type: bleu4
value: 0.0000011301750984972448
- name: ROUGE-L
type: rouge-l
value: 0.13083168975354642
- name: METEOR
type: meteor
value: 0.12419733006916912
- name: BERTScore
type: bertscore
value: 0.8797711839570719
- name: MoverScore
type: moverscore
value: 0.5542757411268555
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: electronics
args: electronics
metrics:
- name: BLEU4
type: bleu4
value: 0.00866799444965211
- name: ROUGE-L
type: rouge-l
value: 0.1601628874804186
- name: METEOR
type: meteor
value: 0.15348605312210778
- name: BERTScore
type: bertscore
value: 0.8783386920680519
- name: MoverScore
type: moverscore
value: 0.5634845371093992
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: books
args: books
metrics:
- name: BLEU4
type: bleu4
value: 0.006278914808207679
- name: ROUGE-L
type: rouge-l
value: 0.12368226019088967
- name: METEOR
type: meteor
value: 0.11576293675813865
- name: BERTScore
type: bertscore
value: 0.8807110440044503
- name: MoverScore
type: moverscore
value: 0.5555905941686486
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: movies
args: movies
metrics:
- name: BLEU4
type: bleu4
value: 0.0000010121579426501661
- name: ROUGE-L
type: rouge-l
value: 0.12508697028506718
- name: METEOR
type: meteor
value: 0.11862284941640638
- name: BERTScore
type: bertscore
value: 0.8748829724726739
- name: MoverScore
type: moverscore
value: 0.5528899173535703
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: grocery
args: grocery
metrics:
- name: BLEU4
type: bleu4
value: 0.00528043272450429
- name: ROUGE-L
type: rouge-l
value: 0.12343711316491492
- name: METEOR
type: meteor
value: 0.15133496445452477
- name: BERTScore
type: bertscore
value: 0.8778951253890991
- name: MoverScore
type: moverscore
value: 0.5701949938103265
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: amazon
args: amazon
metrics:
- name: BLEU4
type: bleu4
value: 0.06530369842068952
- name: ROUGE-L
type: rouge-l
value: 0.25030985091008146
- name: METEOR
type: meteor
value: 0.2229994442645732
- name: BERTScore
type: bertscore
value: 0.9092814804525936
- name: MoverScore
type: moverscore
value: 0.6086538514008419
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.005121882223046874
- name: ROUGE-L
type: rouge-l
value: 0.1346485324169255
- name: METEOR
type: meteor
value: 0.13733272662214893
- name: BERTScore
type: bertscore
value: 0.8811488576438816
- name: MoverScore
type: moverscore
value: 0.5614233235005509
Language Models Fine-tuning on Question Generation: lmqg/bart-large-squad
This model is fine-tuned version of facebook/bart-large for question generation task on the lmqg/qg_squad (dataset_name: default).
Overview
- Language model: facebook/bart-large
- Language: en
- Training data: lmqg/qg_squad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: TBA
Usage
from transformers import pipeline
model_path = 'lmqg/bart-large-squad'
pipe = pipeline("text2text-generation", model_path)
# Question Generation
input_text = 'generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.'
question = pipe(input_text)
Evaluation Metrics
Metrics
Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_squad | default | 0.26168385362299557 | 0.5384959163821219 | 0.27073122286541956 | 0.9100413219045603 | 0.6499011626820898 | link |
Out-of-domain Metrics
Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_squadshifts | 0.059525104157825456 | 0.22365090580055863 | 0.21499800504546457 | 0.9095144685254328 | 0.6059332247878408 | link | |
lmqg/qg_squadshifts | new_wiki | 0.11118273173452982 | 0.2967546690273089 | 0.27315087810722966 | 0.9322739617807421 | 0.6623000084761579 | link |
lmqg/qg_subjqa | tripadvisor | 8.380171318718442e-07 | 0.1402922852924756 | 0.1372146070365174 | 0.8891002409937424 | 0.5604572211470809 | link |
lmqg/qg_squadshifts | default | 0.07839941048417529 | 0.25357667226247294 | 0.24046838149047955 | 0.9182198703598111 | 0.6274693859765924 | link |
lmqg/qg_squadshifts | nyt | 0.08117757543966063 | 0.25292097720734297 | 0.25254205113198686 | 0.9249009759439454 | 0.6406329128556304 | link |
lmqg/qg_subjqa | restaurants | 1.1301750984972448e-06 | 0.13083168975354642 | 0.12419733006916912 | 0.8797711839570719 | 0.5542757411268555 | link |
lmqg/qg_subjqa | electronics | 0.00866799444965211 | 0.1601628874804186 | 0.15348605312210778 | 0.8783386920680519 | 0.5634845371093992 | link |
lmqg/qg_subjqa | books | 0.006278914808207679 | 0.12368226019088967 | 0.11576293675813865 | 0.8807110440044503 | 0.5555905941686486 | link |
lmqg/qg_subjqa | movies | 1.0121579426501661e-06 | 0.12508697028506718 | 0.11862284941640638 | 0.8748829724726739 | 0.5528899173535703 | link |
lmqg/qg_subjqa | grocery | 0.00528043272450429 | 0.12343711316491492 | 0.15133496445452477 | 0.8778951253890991 | 0.5701949938103265 | link |
lmqg/qg_squadshifts | amazon | 0.06530369842068952 | 0.25030985091008146 | 0.2229994442645732 | 0.9092814804525936 | 0.6086538514008419 | link |
lmqg/qg_subjqa | default | 0.005121882223046874 | 0.1346485324169255 | 0.13733272662214893 | 0.8811488576438816 | 0.5614233235005509 | link |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: facebook/bart-large
- max_length: 512
- max_length_output: 32
- epoch: 4
- batch: 32
- lr: 5e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
TBA